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Abstract 

 One of the difficulties in dealing with bimodular materials including composites, rock and 

asphalt-mixture material is the discontinuity of Young's modulus when the principal stress 

changes sign, i.e. from a tensile stress state to a compressive stress state. According to the gen-

eral elastic theory proposed by Ambartsumyan, there are two kinds of domains in which the 

coefficients of elasticity are constant. The discontinuity of Young's modulus causes divergence 

in the computational procedure. In order to overcome this difficulty, two continuous modes for 

bimodular materials are proposed in this paper. The nonlinear equilibrium equations have been 

formulated with a continuous constitute equation of stress and strain. The meshless finite block 

method is successful in solving the nonlinear problems for bimodular materials. The numerical 

solutions of the meshless finite block method in a strong form are obtained using an iterative 

technique. The degree of accuracy and convergence of the proposed technique is demonstrated 

by directly comparing the achieved results with the finite element method and analytical solu-

tions.  
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1. Introduction 

 In classical elasticity theory, it is well known that a material has the same elastic properties 

in tension and compression. However, this is only a simplified modeling and does not account 

for material non-linearity. In material science and engineering structures, it is shown that the 

strength of some materials such as composites, poroelasticity, rocks, concrete and asphalt-

mixture differ significantly during tensile and compressive loading. Furthermore, mechanical 

properties such as the elastic modulus and the Poisson’s ratio of the listed materials can vary 

under tensile and compressive loading. Thus, these materials are defined as bimodular materials 

which have a different Young’s modulus, shear modulus and Poisson’s ratio in respect to ten-

sile and compression loading. In such cases, there are no explicit expressions related to the 

Young’s modulus, the Poisson’s ratio and the shear modulus [1-3]. Experimental data shows 

that the constitutive relationship between stress and strain has different slopes as shown in Fig-

ure 1(a). There is also a jump in the Young's modulus when the stress changes direction as 

shown in Figure 1(b). It has been observed that most materials, including ceramics and some 

composites, have different tensile or compressive strain when subjected to the same tensile or 

compressive stress. 

  

 

 

 

 

 

 

 

 

     (a)            (b) 

Figure 1. Relationship of stress and strain from experimental study: (a) constitution of bi-

modules material; (b) discontinuity of Young's modulus. 
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 Nowadays, two material models are widely used in both theoretical analysis and in engi-

neering application for bimodular materials investigation. The first one is the criterion of posi-

tive-negative signs in the longitudinal strain of fibers, proposed by Bert [4]. This model is ap-

plicable to orthotropic materials and widely used in laminated composites [5-10]. The second 

model is the criterion of positive-negative signs of principal stress, proposed by Ambartsumyan 

[11,12]. This model is applicable to isotropic materials. Ambartsumyan and Khachatryan [13] 

investigated the constitutive relations of bimodular materials theoretically and derived some 

analytical solutions for two and three dimensional problems, including a bar with gravity, beam 

and rectangular flat plate under bending. In the criterion of positive-negative signs of principal 

stress, the stress state in a principal direction is a key issue in the analysis. It is considered that 

Young’s modulus depends not only on the material properties, but also on the stress state at 

collocation point in the domain.  

Due to material non-linearity, the numerical simulation techniques adopted by the Finite 

Element Method (FEM) is based on an iterative strategy. However, commercial finite element 

analysis software such as ANSYS, NASTRAN, ABAQUS and DYNA3D have no functions to 

deal with bimodular problems. Therefore, the development of finite element analysis for bimo-

dular materials has become the focus of many researchers and engineers [14,15,16]. Since there 

is a discontinuity of Young's modulus at the origin shown in Figure 1(b), two kinds of a domain 

are specified in the domain. Yang and Wang [17] proposed a continuous model to treat this dis-

continuity. The analytical solutions are derived for beam and plate bending problems 

[18,19,20].  

The development of new methods and skill in computational mechanics is always an attrac-

tive proposition in regards to solving difficult engineering problems. Mesh free ideas date back 

to 1977 with Monaghan and Gingold [21] and Lucy [22] developing a Lagrangian method 

based on the Kernel Estimates method for modelling problems in astrophysics. Meshless ap-

proximation was proposed by Nayroles et al [23] for the diffuse equation and later, element-

free Galerkin method and re-producing kernel particle methods by Belyschko et al [24] and Liu 

et al [25]. Recently, Atluri and his colleagues [26-30] developed the Meshless Petrov-Galerkin 

methods (MLPGs) using the moving least-square (MLS) approximation which provide a ra-

tional basis for constructing meshless methods. The Local Boundary Integral Equation method 

(LBIE) with either moving least square or radial basis function (RBF) has been developed by 
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Sladek et al [31,32,33] for the boundary value problems in anisotropic non-homogeneous me-

dia. A comprehensive review of meshless methods (MLPG) can be found in the book [30] by 

Atluri. Based on the point collocation method, the meshless Finite Block Method (FBM) was 

first proposed to solve elasticity problems by Wen and Cao [34]. Later, the FBM was success-

fully applied to the study of non-linear elasticity including heat conduction, contact and fracture 

mechanics by Li and Wen [35] and Li et al [36,37]. The unique feature of the FBM is that the 

domain is discretized into several blocks and the partial differential matrices are applied for 

each block with the mapping technique. In this paper, two continuous models in the constitu-

tion equation for bimodular materials are proposed in order to improve the computational accu-

racy and convergence with an iterative algorithm by using the FBM. In the principal coordi-

nates, the Hook's law in elasticity matrix related to the principal stresses and strains is formu-

lated for two and three dimensional problems. The stress-Young's modulus relationship is in-

terpolated by a linear or a hyperbolic tangent function. A set of algebraic equation from the par-

tial differential equations in a strong form is formulated in terms of the nodal values of dis-

placement. Due to the non-linearity of material property, an iterative method is applied in the 

computation.  

In this paper, the meshless FBM method is applied to high non-linear elasticity problems in 

engineering and the results are compared against the equivalent FEM results. The FEM method 

is widely accepted as the benchmark for numerical analysis across industry and among re-

searchers. The accuracy and divergence of the method are observed and comparisons with ana-

lytical solution and FEM have been made for beam bending, rectangular plate with a circular 

hole and hollow/solid cylinders under compressive load. 

 

2. Bimodular material governing equations 

Two linear stress-strain relationships with different slopes under either tension or compres-

sion loadings are shown in Figure 1(a). The analytical theory proposed by Ambartsumyan [11] 

can be summarized below with two kinds of domain. 

2.1. General elasticity law 

From the assumption of elasticity in the principal directions and the linear Hook's law gives 

,131211 γβαα σσσε aaa ++=  



Continuous constitutive model for bimodulus materials with meshless approach                                                       Huang, Pan, Jin, Zheng, Wen 

 - 5 - 

,
,

332313

232212

γβαγ

γβαβ

σσσε

σσσε

aaa
aaa

++=

++=
                (1) 

,0=== αγβγαβ γγγ  

where the coefficients ija depend on the stress state as  

(1) If 0>>> γβα σσσ , we have 

+

+

+ −======
E

aaa
E

aaa ν
231312332211 ;1             (2) 

(2) If 0<<< αβγ σσσ , we have 

−

−

− −======
E

aaa
E

aaa ν
231312332211 ;1             (3) 

(3) If 0>> γα σσ  and 0<βσ , we have 

−

−

+

+

−+ −=−======
EE

aaa
E

a
E

aa νν
231312223311 ;1;1          (4) 

(4) If 0>βσ  and 0<< αγ σσ , we have 

−

−

+

+

−+ −=−======
EE

aaa
E

aa
E

a νν
231312331122 ;1;1          (5) 

Cases (1) and (2) are defined as the first kind, cases (3) and (4) are the second kind. For the first 

kind, the classic linear elastic theory is valid. In the Cartesian's coordinate system, the principal 

direction along the principal stresses γβα σσσ  and , are defined as shown in Figure 2 as

),,,( 321 lll=α ),,(),,,( 321321 nnnmmm == γβ . Then, the strain and stress analysis gives [11] 

  

 

 

 

 

 

 

  Figure 2. Principal stresses and their directions in Cartesian's coordinate system. 
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in which wvu ,,  are displacements and A and B are coefficients. Consider the second kind only 

here, i.e. 02 =B , and (6) and (7) give 
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where  

 γβα εεεεεε ++=++=
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2.2. Continuous modelling of Young's modulus 

It is apparent there are two types of domain determined by the stress state from (1) to (10). 

All coefficients in the general elasticity law are dependent on the stress state in the field, which 

constructs the nonlinearity. Apart from that, there is also a jump between the different types of 

domain and this is the main cause of the numerical computational divergence.  
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Heaviside variation (bimodules shown in Figure 3): the discontinuity of the Young's modulus 

by Ambartsumyan can be expressed as 

)()()( σσ HEEEE −+− −+=                 (11) 

where )(σH  is the Heaviside function. In order to establish a continuous model of Young's 

modulus, a linear and smooth modulus model is proposed as shown in Figure 3. Clearly there 

are no sub-domains of the stress state in the formulations.  

                            

        Figure 3. Continuous models of Young's modulus. 
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where c is the characteristic stress to be determined by the curve fitting technique with experi-

mental data under uniaxial tensile/compressive loads. This parameter is normalized using the 

applied load 0βσ=c , where β  is the character dimensionless factor and 0σ as utilised in this 

paper denotes the applied pressure load. 
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Hyperbolic tangent variation: the variation of the Young's modulus is smooth and can be writ-

ten as 

 
)/(tanh

22
)( cEEEEE σσ

−+−+ −
+

+
=              (13) 

where )/tanh( cσ  is a hyperbolic function. The comparison of these two continuous modes is 

illustrated in Figure 3. Apparently, for a large absolute value of stress, the Young's modulus is 

taken either as +E or −E for both continuous modes. Figure 4 shows the relation between the 

strain and the normalized stress. The difference between the bimodules model and the conti-

nuous model can be seen clearly. The linear model is much closer to the bimodules mode than 

the hyperbolic tangent model. However, the hyperbolic model is a smooth model and is there-

fore, easier to formulize all partial differential equations in a mathematical model. In addition, 

the numerical solutions show that the difference between the linear and the hyperbolic modes 

are too small.  
 

                        

  Figure 4. Constitute relationship between stress and strain in one dimensional problem. 
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3. Formulations for bimodular material 

By introducing the continuous mode, we do not need to divide the field into two types in 

order to specify all the coefficients of the material in the principal stress directions. All coeffi-

cients in (1) can be written as 
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In fact, we hold the assumption, proposed by Ambartsumyan [11,12], as follows 
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For the sake of convenience of the formulation, (7) can be shorten as 
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where the functions of stress state 
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Substituting (16) into the equilibrium equation gives, with zero body forces, as 
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where 2222222 /// zyx ∂∂+∂∂+∂∂=∇ . The traction boundary conditions, in terms of displace-

ments are given as 
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where YX , and Z  are tractions on the boundary and ),,( zyx nnn=n is the normal outward vec-

tor to the boundary. It is noticeable that the partial differential equations in (18), (19) and (20) 

with boundary conditions from (21) to (23) are non-linear as the coefficients BA, and ijf  are 

functions of the principal stress βσ and its directions ),,( 321 mmm as well. 

2.2. Plane stress problems 

 For a two dimensional plane stress problem, all variables are independent of the z-axis and 

the principal directions 1,0 32133 ===== nnnml  and stresses 0==== yzxzz ττσσ γ . Therefore, 

Equations (16) and (17) can be simplified as 
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where 
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and two tractions on the boundary are 
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For the sake of convenience of analysis, we assume that βα σσ >  and hold 
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4. Meshless finite block method and iterative algorithm 

4.1. Lagrange polynomial interpolation 

By using the Lagrange polynomial interpolation, the function )(Qu at ),( ηξQ can be ap-

proximated as 
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For two dimensional problems, a set of nodes in the normalized domain are considered, as 

shown in Figure 5. At ),( kkP ηξ , iNjk +×−= ξ)1( , ξNi ,...,2,1=  and ηNj ,...,2,1= , where 

αN ),( ηξα =  indicate the node numbers along the two axes and the total number of nodes 
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Therefore, the first order partial differential of the shape function )(Qkφ can be determined eas-

ily as 
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4.2 Partial differential matrix 

 The nodal value of the first order partial differentials can be written in a vector form from 

(32), in terms of the nodal value of function u, see [34,35], as 

 uDUu ααα ==, , { }
MMkl ×

= αα φ ,D ,  ),;,...,2,1,( ηξα == Mlk ,       (38) 

where 

 
T

21
,

)(,...,)(,)(








∂
∂

∂
∂

∂
∂

=
αααα

MPuPuPuu , T
21 })(),...,(),({ MPuPuPu=u .      (39) 

The L-th order partial differentials in two dimensions with respect to both coordinates ξ  and η

can be obtained approximately by 
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 Figure 5. Uniformly distributed nodes in mapped domain and numbering system for FBM. 
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Therefore, the vectors of the higher order partial differentials can be constructed [34,35], in 

terms of the first order partial differential matrices ξD  and ηD , as  

 ., uDDu nm
mn ηξ≈                     (41) 

4.3 Mapping differential matrix 

A quadratic block with 8 seeds shown in Figure 6(a) is mapped into a normalized domain 

(square) as shown in Figure 6(b) using the shape functions  

4,3,2,1for      )1)(1)(1(
4
1

=−+++= iN iiiii ηηξξηηξξ      

7,5for       )1)(1(
2
1 2 =+−= iN ii ηηξ               (42) 

8,6for     )1)(1(
2
1 2 =+−= iN ii ξξη  
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Nξ+1 2Nξ 

jNξ 

NξNη 

Nξ 1 2 i 



Continuous constitutive model for bimodulus materials with meshless approach                                                       Huang, Pan, Jin, Zheng, Wen 

 - 14 - 
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 Figure 6. Five nodes mapping: (a) practical domain; (b)normalized domain. 

 

where )8,...,2,1(  ),( =iii ηξ  are the seed coordinates shown in Figure 4(b). Therefore, the trans-

formation of the coordinate (mapping) for the real domain can be written as 
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The partial differentials of the function ),( yxu is given by 
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Therefore, the first order partial differential matrices in the physical domain can be obtained 

( ) uDuDΔDΔUΔUΔU xx =+=+= ηξηξ 12111211 ,           (45) 

( ) uDuDΔDΔUΔUΔU yy =+=+= ηξηξ 22212221 ,           (46) 
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)()( / kk
ij Jβ  is calculated from (45) at collocation point ),( kkkP ηξ= . It is apparent that the nodal 

values of the first order partial differentials can be determined in terms of the first order partial 

differential matrix in the normalized domain, where 1 ;1 ≤≤ ηξ .  

4.4. Iterative algorithm with meshless method 

Meshless finite block method has two approaches including the formations of the governing 

equation in a strong form and a weak form. Both solutions have different advantages as dis-

cussed by Wen and Cao [34], and Li et al [35]. The formulations in a strong form are simpler 

and more direct.  The equilibrium equations in terms of displacements from (28) give  
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where the body forces on the right hand side 
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They are non-linear partial differential equations due to the variables xb,λ and yb dependent on 

the stress state ),,( xyyx τσσ . Applying partial differential matrices over (48) produce  
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where { }Muuu ,...,, 21
T =u , },...,,{ 21

T
Mvvv=v , },...,,{ 1

T
ijMijijij fff=f  are vectors of nodal value, I 

is the unit diagonal matrix and diagonal matrices defined as following 
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The traction boundary conditions at the boundary point ),( kk yxP can be written from (29) as 
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 The iterative algorithm used by the meshless finite block method can be fulfilled with the 

following procedures 

Step 1: Set 0=m  and all elastic parameters are specified as EEE == −+ , ννν == −+  and

ν
νλ
−

−=
1

. All non-linear coefficients 0
ijf are set to be zero. The displacements ( )00,vu  and 

stresses ),,( 000
xyyx τσσ  are obtained by solving (50) and (51) with boundary conditions (SM); 

Step 2: Determine the principal stresses )( 0
βσ and their directions ),( 0

2
0
1 mm  coefficients, includ-

ing 000 ,, ijfAλ which are functions of the principal stresses ),( 00
βα σσ and the stress state

),,( 000
xyyx τσσ at each collocation point; 

Step 3: Set 1+= mm ; 

Step 4: Determine displacements ( )mm vu ,  and stresses ),,( m
xy

m
y

m
x τσσ by solving the following 

linear algebraic systems equation with boundary conditions, 
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Step 5: Determine the principal stresses )( m

βσ and their directions ),( 21
mm mm , all coefficients 

including m
ij

mm fA ,,λ  by stress state ),,( xyyx τσσ at each collocation point. To speed up the iter-

ative process, the vectors of the body force are modified by 
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where α  is the modification factor in the iterative process. In the computational procedure, the 

average value of the body force term is considered, and 5.0=α . Evidently, the selection of the 

modification factor does not have much influence on the final numerical results; 

Step 6: Check the average error of displacement for all collocationsη  

 ∑
=

−−=
M

l

m
l

m
l uu

M 1

11η                   (58) 

if 610−<η go to Step 8 

Step 7: set 1+= mm  and go to Step 4; 

Step 8: Print results and the computation is terminated. 

  

5. Numerical analysis 

5.1 Cantilever beam in bimodular material 

First, we consider a beam of length L and height h with bimodular material loaded by a lin-

ear distributed normal stress shown in Figure 7. It is assumed that 0=xyτ  and the normal stress 

xσ  can be derived in the following, by the assumption [11], as 
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ρ
ε 'y

x =                      (59) 

where ρ is the radius of curvature and 'y  is measured from the neutral axis. Therefore, we 

have 
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From the equilibrium conditions, one has 

 
−+

+

−+

−

+
=

+
=

EE
Ehh

EE
Ehh 11 ,               (61) 

and  
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ρ
1 , where ( )3

1
3
23

hEhEbD +− += .             (62) 

 In the following numerical simulations, the ratio of Young's modulus 2/ =+− EE  and Pois-

son ratio 1.0=+ν . All computations are performed with double precision on a Lenovo-PC. The 

ratio 2/ =hL and one block is used, and the node numbers ηξ NN 2= . The location of nodes 

along the two axes in the normalized domain is selected as 
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    Figure 7. Cantilever beam in bimodular material. 

h 

L 

y, y' 

x 

M h1 

h2 



Continuous constitutive model for bimodulus materials with meshless approach                                                       Huang, Pan, Jin, Zheng, Wen 

 - 19 - 

 

            

 Figure 8. Normal stress distribution 0/σσ x on the cross section 2/Lx = with characteristic 

parameter 1.0=β . 

The normalized stress distribution 0/σσ x  at Lx 5.0= for linear smooth mode of Young's mod-

ulus is shown in Figure 8 where the characteristic factor of material 1.0=β and the node num-

ber is selected as 11=ηN  or 16=ηN . Analytical solution in (60) is presented in the figure to 

show the degrees of accuracy and convergence of this method. The bending normal stress for 

the Same Modulus (SM) material, i.e. 1/ =+− EE , is presented to show the influence of the bi-

modular material. It can be seen that the neutral axis shifts to the bottom and the value of nor-

mal compressive stress is larger than tensile stress due to the bimodular property.  

In order to determine the degree of accuracy for any numerical method, a rigorous study of 

the numerical error and a convergence analysis must be conducted. Due to the difficulty in eva-

luating a high nonlinear problem, it was very challenging to estimate the error for the FBM in 

this context. Nonetheless, the accuracy and efficiency of the numerical results is provided in 

this example. Table 1 shows the average error for normal stress between the numerical results 

and the analytical solutions, i.e. η

η

σση N
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x∑

=
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)(*)( / , where )*(l
xσ  is the analytical solution 

defined in (60) for the different models and characteristic factor β . It is shown that the influ-

ence of the characteristic factor β  is significant for both material models. In general, the aver-
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age error decreases with an increase in the node density. It is expected that the error is larger 

for a small characteristic factor. In addition, the common logarithm of the average error versus 

the iteration step is shown in Figure 9  when 16=ηN . For the iteration process, it can be seen 

that the results converged for a large range of characteristic factor selection, i.e. 01.0≥β . It is 

true that a converge result can be achieved quickly with an average error of 1% at iteration step 

5 for each characteristic factor β . However, the numerical solutions are affected significantly 

when 01.0<β  and the oscillation of the results is observed for large iterative number )8( >m . 

 Table 1. Average errors with different modes and character parameters. 

ηξ NN ×  
0.1=β  1.0=β  01.0=β  

Linear Hyperbolic Linear Hyperbolic Linear Hyperbolic 

1121×  0.0018 0.0030 0.0023 0.0190 0.0259 0.0216 

1631×  0.0014 0.0022 0.0021 0.0125 0.0064 0.0093 

 

          
Figure 9. The common logarithm of average error in (58) against the iteration number m for 

different characteristic factor β . 
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5.2 Square plate with circular hole under pressure load 

 Secondly, a square plate containing a circular hole as shown in Figure 10(a) subjected to a 

pressure load 0σ  is considered. Due to the symmetry of the problem, only a quarter of the plate 

is modelled with half the width Ra 2=  with two blocks. It is clear that a minimum number of 

two blocks is required for this configuration of the domain. For a complicated problem includ-

ing contact between two bodies [36] or a cracked body [37], more blocks should be used. In 

order to show the distribution of the collocation points in the physical domain as in Figure 

10(b), the node numbers 1111×=× ηξ NN are selected with regular distribution in the normal-

ized domain. On the interface, both continuous conditions of displacement and traction 

( 1+=Iη  and 1−=IIη ) have to be satisfied, i.e. III uu = , III vv = , 0=+ II
x

I
x tt and 0=+ II

y
I
y tt . 

The number of nodes )( II NN ηξ ×  and )( IIII NN ηξ × are equal and selected to be 16 on each axis 

and the hyperbolic tangent model is adopted.  

 

 

 

 

 

 

 

 

 

 

     (a)           (b) 

Figure 10. Blocks for a quarter square plate and their mapping seeds (a) geometry and boun-

dary conditions; (b) distribution of node in two blocks. 

 

 To show the efficiency and accuracy of the meshless method, the numerical solutions given 

by FEM [38] are also shown on the same figure for comparison. By comparing the meshless 

FBM method to the FEM method, two main advantages of the proposed method can be ob-
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served. First, it can be said that the FBM modeling of the problem is very simple when com-

pared to the FEM method. The elements used in meshing the rectangular plate and the solid 

cylinder are shown in Figure 11. In this example the total number of nodes used by the FBM 

method is 242 and by the FEM method is 13128. To achieve a highly accurate numerical solu-

tion with the FEM method, a high density mesh should be considered. Secondly, the conver-

gence of the FBM method can be achieved easily. For the FEM method, several special algo-

rithms must be applied in the iteration procedure in order to obtain a convergent result as de-

scribed in [38]. Figures 12(a)(b) show the normalized stress distributions 0/σσ y  and 0/σσ x on 

edges AB and BC respectively when characteristic factor β  is taken to be 0.5. The solutions for 

the same modulus (SM) material are presented to show the gaps caused by bimodular property 

of the material. Also, very small influence can be found caused by characteristic factor β  as 

shown in Figures 13(a)(b) in the region 5.05 ≤≤ β . Similar to the previous example, the insta-

bility with oscillation of results in iteration occurs when 1.0≤β  and 6>m . An excellent 

agreement with FEM was achieved from the numerical results in these figures.  

 

 
 

   Elements:12804, nodes: 13128              Elements: 20400，nodes: 20521 
 
 Figure 11. Meshes for a rectangular plate and solid cylinder with the finite element method. 
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 Figure 12. Normalized stress distributions when 5.0=β : (a) along the edge AB; (b) along 

the edge CD. 
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 Figure 13. Normalized stress distributions for different characteristic factors: (a) along the 

edge AB; (b) along the edge CD. 

5.3 Hollow and solid cylindrical specimen under pressure load 
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Science and Technology. Due to the symmetry of the problem, a quarter of the plate is mod-

elled. Again, two blocks (I and II) are used and the interface is located at ϕ ( 3/π= ) as shown 

in Figures 14(b)(c). For a hollow cylinder, we assume ab rr 2= and for a solid cylinder 2=br . 

In this numerical modeling, the node numbers are selected as16 along two axes for each 

block and the smooth hyperbolic tangent model is adopted with characteristic factor 5.0 ,1=β . 

Figures 15 and 16 show the normalized stress distributions 0/σσ y  and 0/σσ x  on edge AB and 

edge BC for the hollow and the solid cylinder respectively. The numerical solutions given by 

FEM [38] are shown on the same figures [38] for comparison. Seeing from these computational 

results, a reasonable accuracy was achieved by the meshless approach with continuous Young's 

modulus modeling to deal with nonlinear bimodular materials. It was noticed that the iteration 

becomes unstable when 1.0≤β  and 5>m . In addition, for the solid cylinder, the oscillation 

near the centre of cylinder is observed and this is caused by the inner radius selection, i.e. 

01.0/ =ba rr  to model the solid cylinder. Therefore, in this case, the polar coordinate system for 

FBM should be considered. 

 

6. Conclusion 

 The meshless finite block method was developed to study composites, rock-like and asphalt 

mixture material with different Young's moduli. As the constitute equation of stress and strain 

depends on the stress state in the domain, the partial differential equations are highly non-linear. 

It has been shown that the meshless FBM is one effective method to deal with bimodular mate-

rial problems in engineering with high accuracy and convergence. The governing equations are 

formulated in a strong form and the efficiency of the method was demonstrated with three ex-

amples. The following conclusion can be made 

(1) Linear and hyperbolic models are efficient for bimodular material analysis; 

(2) Meshless approach is simple and accurate for nonlinear material property investigation; 

(3) Characteristic parameter of material has slight influence in large selections. 

Furthermore, this method can be extended straightaway to more complicated problems with 

bimodular materials such as elasto-plasticity, coupling with temperature and time dependent 
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problems. In addition, the FBM method can be applied to a fracture problem where the stress 

singularity at crack tip is analytically determined.  

 

 

 

 

 

 

 

 

 

 

 

 

                 (a)                                                       (b)                                                        (c) 

 Figure 14. Geometry and boundary conditions of  numerical modeling: (a) experiment of 

asphalt-mixture materials, (b) solid cylinder under compressive load and(c) hollow cylinder. 
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Figure 15. Normalized stress distributions when 5.0=β : (a) along the edge AB; (b) along the 

edge CD. 
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Figure 16. Normalized stress distributions for different characteristic factor β : (a) along the 

edge AB; (b) along the edge CD. 
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