101 research outputs found

    Characterization of complete genome sequence of the spring viremia of carp virus isolated from common carp (Cyprinus carpio) in China

    Get PDF
    The complete genome of spring viraemia of carp virus (SVCV) strain A-1 isolated from cultured common carp (Cyprinus carpio) in China was sequenced and characterized. Reverse transcription-polymerase chain reaction (RT-PCR) derived clones were constructed and the DNA was sequenced. It showed that the entire genome of SVCV A-1 consists of 11,100 nucleotide base pairs, the predicted size of the viral RNA of rhabdoviruses. However, the additional insertions in bp 4633-4676 and bp 4684-4724 of SVCV A-1 were different from the other two published SVCV complete genomes. Five open reading frames (ORFs) of SVCV A-1 were identified and further confirmed by RT-PCR and DNA sequencing of their respective RT-PCR products. The 5 structural proteins encoded by the viral RNA were ordered 3'-N-P-M-G-L-5'. This is the first report of a complete genome sequence of SVCV isolated from cultured carp in China. Phylogenetic analysis indicates that SVCV A-1 is closely related to the members of the genus Vesiculovirus, family Rhabdoviridae.The complete genome of spring viraemia of carp virus (SVCV) strain A-1 isolated from cultured common carp (Cyprinus carpio) in China was sequenced and characterized. Reverse transcription-polymerase chain reaction (RT-PCR) derived clones were constructed and the DNA was sequenced. It showed that the entire genome of SVCV A-1 consists of 11,100 nucleotide base pairs, the predicted size of the viral RNA of rhabdoviruses. However, the additional insertions in bp 4633-4676 and bp 4684-4724 of SVCV A-1 were different from the other two published SVCV complete genomes. Five open reading frames (ORFs) of SVCV A-1 were identified and further confirmed by RT-PCR and DNA sequencing of their respective RT-PCR products. The 5 structural proteins encoded by the viral RNA were ordered 3'-N-P-M-G-L-5'. This is the first report of a complete genome sequence of SVCV isolated from cultured carp in China. Phylogenetic analysis indicates that SVCV A-1 is closely related to the members of the genus Vesiculovirus, family Rhabdoviridae

    Heme activates TLR4-mediated inflammatory injury via MyD88/TRIF signaling pathway in intracerebral hemorrhage

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Inflammatory injury plays a critical role in intracerebral hemorrhage (ICH)-induced neurological deficits; however, the signaling pathways are not apparent by which the upstream cellular events trigger innate immune and inflammatory responses that contribute to neurological impairments. Toll-like receptor 4 (TLR4) plays a role in inflammatory damage caused by brain disorders.</p> <p>Methods</p> <p>In this study, we investigate the role of TLR4 signaling in ICH-induced inflammation. In the ICH model, a significant upregulation of TLR4 expression in reactive microglia has been demonstrated using real-time RT-PCR. Activation of microglia was detected by immunohistochemistry, cytokines were measured by ELISA, MyD88, TRIF and NF-κB were measured by Western blot and EMSA, animal behavior was evaluated by animal behavioristics.</p> <p>Results</p> <p>Compared to WT mice, TLR4<sup>−/− </sup>mice had restrained ICH-induced brain damage showing in reduced cerebral edema and lower neurological deficit scores. Quantification of cytokines including IL-6, TNF-α and IL-1β and assessment of macrophage infiltration in perihematoma tissues from TLR4<sup>−/−</sup>, MyD88<sup>−/− </sup>and TRIF<sup>−/− </sup>mice showed attenuated inflammatory damage after ICH. TLR4<sup>−/− </sup>mice also exhibited reduced MyD88 and TRIF expression which was accompanied by decreased NF-κB activity. This suggests that after ICH both MyD88 and TRIF pathways might be involved in TLR4-mediated inflammatory injury possibly via NF-κB activation. Exogenous hemin administration significantly increased TLR4 expression and microglial activation in cultures and also exacerbated brain injury in WT mice but not in TLR4<sup>−/− </sup>mice. Anti-TLR4 antibody administration suppressed hemin-induced microglial activation in cultures and in the mice model of ICH.</p> <p>Conclusions</p> <p>Our findings suggest that heme potentiates microglial activation <it>via </it>TLR4, in turn inducing NF-κB activation <it>via </it>the MyD88/TRIF signaling pathway, and ultimately increasing cytokine expression and inflammatory injury in ICH. Targeting TLR4 signaling may be a promising therapeutic strategy for ICH.</p

    Genome-wide association study of copy number variation with lung function identifies a novel signal of association near BANP for forced vital capacity

    Get PDF
    Background: Genome-wide association studies of Single Nucleotide Polymorphisms (SNPs) have identified 55 SNPs associated with lung function. However, little is known about the effect of copy number variants (CNVs) on lung function, although CNVs represent a significant proportion of human genetic polymorphism. To assess the effect of CNVs on lung function quantitative traits, we measured copy number at 2788 previously characterised, common copy number variable regions in 6 independent cohorts (n = 24,237) using intensity data from SNP genotyping experiments. We developed a pipeline for genome-wide association analysis and meta-analysis of CNV genotypes measured across multiple studies using SNP genotype array intensity data from different platform technologies. We then undertook cohort-level genome-wide association studies of CNV with lung function in a subset of 4 cohorts (n < = 12,403) with lung function measurements and meta-analysed the results. Follow-up was undertaken for CNVs which were well tagged by SNPs, in up to 146,871 individuals.Results: We generated robust copy number calls for 1962 out of 2788 (70 %) known CNV regions genome-wide, with 1103 measured with compatible class frequencies in at least 2 cohorts. We report a novel CNV association (discovery P = 0.0007) with Forced Vital Capacity (FVC) downstream of BANP on chromosome 16 that shows evidence of replication by a tag SNP in two independent studies (replication P = 0.004). In addition, we provide suggestive evidence (discovery P = 0.0002) for a role of complex copy number variation at a previously reported lung function locus, containing the rootletin gene CROCC, that is not tagged by SNPs.Conclusions: We demonstrate how common CNV regions can be reliably and consistently called across cohorts, using an existing calling algorithm and rigorous quality control steps, using SNP genotyping array intensity data. Although many common biallelic CNV regions were well-tagged by common SNPs, we also identified associations with untagged mulitallelic CNV regions thereby illustrating the potential of our approach to identify some of the missing heritability of complex traits

    Precise Spatiotemporal Control of Optogenetic Activation Using an Acousto-Optic Device

    Get PDF
    Light activation and inactivation of neurons by optogenetic techniques has emerged as an important tool for studying neural circuit function. To achieve a high resolution, new methods are being developed to selectively manipulate the activity of individual neurons. Here, we report that the combination of an acousto-optic device (AOD) and single-photon laser was used to achieve rapid and precise spatiotemporal control of light stimulation at multiple points in a neural circuit with millisecond time resolution. The performance of this system in activating ChIEF expressed on HEK 293 cells as well as cultured neurons was first evaluated, and the laser stimulation patterns were optimized. Next, the spatiotemporally selective manipulation of multiple neurons was achieved in a precise manner. Finally, we demonstrated the versatility of this high-resolution method in dissecting neural circuits both in the mouse cortical slice and the Drosophila brain in vivo. Taken together, our results show that the combination of AOD-assisted laser stimulation and optogenetic tools provides a flexible solution for manipulating neuronal activity at high efficiency and with high temporal precision

    Population Genetic Diversity and Structure of a Naturally Isolated Plant Species, Rhodiola dumulosa (Crassulaceae)

    Get PDF
    Aims: Rhodiola dumulosa (Crassulaceae) is a perennial diploid species found in high-montane areas. It is distributed in fragmented populations across northern, central and northwestern China. In this study, we aimed to (i) measure the genetic diversity of this species and that of its populations; (ii) describe the genetic structure of these populations across the entire distribution range in China; and (iii) evaluate the extent of gene flow among the naturally fragmented populations. Methods: Samples from 1089 individuals within 35 populations of R. dumulosa were collected, covering as much of the entire distribution range of this species within China as possible. Population genetic diversity and structure were analyzed using AFLP molecular markers. Gene flow among populations was estimated according to the level of population differentiation. Important Findings: The total genetic diversity of R. dumulosa was high but decreased with increasing altitude. Populationstructure analysis indicated that the most closely related populations were geographically restricted and occurred in close proximity to each other. A significant isolation-by-distance pattern, caused by the naturally fragmented population distribution, was observed. At least two distinct gene pools were found in the 35 sampled populations, one composed of populations in northern China and the other composed of populations in central and northwestern China. The calculation of Nei’s gene diversity index revealed that the genetic diversity in the northern China pool (0.1972) was lower than that in th

    Improved measurement of the reactor antineutrino flux and spectrum at Daya Bay

    Get PDF
    published_or_final_versio

    Measurement of electron antineutrino oscillation based on 1230 days of operation of the Daya Bay experiment

    Get PDF
    published_or_final_versio

    Improved Search for a Light Sterile Neutrino with the Full Configuration of the Daya Bay Experiment

    Get PDF
    published_or_final_versio

    Limits on active to sterile neutrino oscillations from disappearance searches in the MINOS, Daya Bay, and bugey-3 experiments

    Get PDF
    Searches for a light sterile neutrino have been performed independently by the MINOS and the Daya Bay experiments using the muon (anti)neutrino and electron antineutrino disappearance channels, respectively. In this Letter, results from both experiments are combined with those from the Bugey-3 reactor neutrino experiment to constrain oscillations into light sterile neutrinos. The three experiments are sensitive to complementary regions of parameter space, enabling the combined analysis to probe regions allowed by the Liquid Scintillator Neutrino Detector (LSND) and MiniBooNE experiments in a minimally extended four-neutrino flavor framework. Stringent limits on sin^2 2θμe are set over 6 orders of magnitude in the sterile mass-squared splitting Δm^2 41. The sterile-neutrino mixing phase space allowed by the LSND and MiniBooNE experiments is excluded for Δm^2 41 < 0.8 eV^2 at 95% CLs
    corecore