319 research outputs found

    A modified protocol for the detection of three different mRNAs with a new-generation in situ hybridization chain reaction on frozen sections

    Get PDF
    A new multiple fluorescence in situ hybridization method based on hybridization chain reaction was recently reported, enabling simultaneous mapping of multiple target mRNAs within intact zebrafish and mouse embryos. With this approach, DNA probes complementary to target mRNAs trigger chain reactions in which metastable fluorophore-labeled DNA hairpins self-assemble into fluorescent amplification polymers. The formation of the specific polymers enhances greatly the sensitivity of multiple fluorescence in situ hybridization. In this study we describe the optimal parameters (hybridization chain reaction time and temperature, hairpin and salt concentration) for multiple fluorescence in situ hybridization via amplification of hybridization chain reaction for frozen tissue sections. The combined use of fluorescence in situ hybridization and immunofluorescence, together with other control experiments (sense probe, neutralization and competition, RNase treatment, and anti-sense probe without initiator) confirmed the high specificity of the fluorescence in situ hybridization used in this study. Two sets of three different mRNAs for oxytocin, vasopressin and somatostatin or oxytocin, vasopressin and thyrotropin releasing hormone were successfully visualized via this new method. We believe that this modified protocol for multiple fluorescence in situ hybridization via hybridization chain reaction would allow researchers to visualize multiple target nucleic acids in the future

    Observation of CR Anisotropy with ARGO-YBJ

    Get PDF
    The measurement of the anisotropies of cosmic ray arrival direction provides important informations on the propagation mechanisms and on the identification of their sources. In this paper we report the observation of anisotropy regions at different angular scales. In particular, the observation of a possible anisotropy on scales between \sim 10 ^{\circ} and \sim 30 ^{\circ} suggests the presence of unknown features of the magnetic fields the charged cosmic rays propagate through, as well as potential contributions of nearby sources to the total flux of cosmic rays. Evidence of new weaker few-degree excesses throughout the sky region 195195^{\circ}\leq R.A. 315\leq 315^{\circ} is reported for the first time.Comment: Talk given at 12th TAUP Conference 2011, 5-9 September 2011, Munich, German

    Mammalian Ste20-Like Kinase and SAV1 Promote 3T3-L1 Adipocyte Differentiation by Activation of PPARγ

    Get PDF
    The mammalian ste20 kinase (MST) signaling pathway plays an important role in the regulation of apoptosis and cell cycle control. We sought to understand the role of MST2 kinase and Salvador homolog 1 (SAV1), a scaffolding protein that functions in the MST pathway, in adipocyte differentiation. MST2 and MST1 stimulated the binding of SAV1 to peroxisome proliferator-activated receptor γ (PPARγ), a transcription factor that plays a key role in adipogenesis. The interaction of endogenous SAV1 and PPARγ was detected in differentiating 3T3-L1 adipocytes. This binding required the kinase activity of MST2 and was mediated by the WW domains of SAV1 and the PPYY motif of PPARγ. Overexpression of MST2 and SAV1 increased PPARγ levels by stabilizing the protein, and the knockdown of SAV1 resulted in a decrease of endogenous PPARγ protein in 3T3-L1 adipocytes. During the differentiation of 3T3-L1 cells into adipocytes, MST2 and SAV1 expression began to increase at 2 days when PPARγ expression also begins to increase. MST2 and SAV1 significantly increased PPARγ transactivation, and SAV1 was shown to be required for the activation of PPARγ by rosiglitazone. Finally, differentiation of 3T3-L1 cells was augmented by MST2 and SAV1 expression and inhibited by knockdown of MST1/2 or SAV1. These results suggest that PPARγ activation by the MST signaling pathway may be a novel regulatory mechanism of adipogenesis

    Observation of the cosmic ray moon shadowing effect with the ARGO-YBJ experiment

    Get PDF
    Cosmic rays are hampered by the Moon and a deficit in its direction is expected (the so-called Moon shadow). The Moon shadow is an important tool to determine the performance of an air shower array. Indeed, the westward displacement of the shadow center, due to the bending effect of the geomagnetic field on the propagation of cosmic rays, allows the setting of the absolute rigidity scale of the primary particles inducing the showers recorded by the detector. In addition, the shape of the shadow permits to determine the detector point spread function, while the position of the deficit at high energies allows the evaluation of its absolute pointing accuracy. In this paper we present the observation of the cosmic ray Moon shadowing effect carried out by the ARGO-YBJ experiment in the multi-TeV energy region with high statistical significance (55 standard deviations). By means of an accurate Monte Carlo simulation of the cosmic rays propagation in the Earth-Moon system, we have studied separately the effect of the geomagnetic field and of the detector point spread function on the observed shadow. The angular resolution as a function of the particle multiplicity and the pointing accuracy have been obtained. The primary energy of detected showers has been estimated by measuring the westward displacement as a function of the particle multiplicity, thus calibrating the relation between shower size and cosmic ray energy. The stability of the detector on a monthly basis has been checked by monitoring the position and the deficit of the Moon shadow. Finally, we have studied with high statistical accuracy the shadowing effect in the ''day/night’’ time looking for possible effect induced by the solar wind

    Highlights from the ARGO-YBJ experiment

    Get PDF
    The ARGO-YBJ experiment at YangBaJing in Tibet (4300 m a.s.l.) has been taking data with its full layout since October 2007. Here we present a few significant results obtained in gamma-ray astronomy and cosmic-ray physics. Emphasis is placed on the analysis of gamma-ray emission from point-like sources (Crab Nebula, MRK 421), on the preliminary limit on the antiproton/proton flux ratio, on the large-scale cosmic-ray anisotropy and on the proton–air cross-section. The performance of the detector is also discussed, and the perspectives of the experiment are outlined
    corecore