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Abstract: A new multiple fluorescence in situ hybridization method based on 

hybridization chain reaction was recently reported, enabling simultaneous mapping of 

multiple target mRNAs within intact zebrafish and mouse embryos. With this 

approach, DNA probes complementary to target mRNAs trigger chain reactions in 

which metastable fluorophore-labeled DNA hairpins self-assemble into fluorescent 

amplification polymers. The formation of the specific polymers enhances greatly the 

sensitivity of multiple fluorescence in situ hybridization. In this study we describe the 

optimal parameters (hybridization chain reaction time and temperature, hairpin and 

salt concentration) for multiple fluorescence in situ hybridization via amplification of 

hybridization chain reaction for frozen tissue sections. The combined use of 

fluorescence in situ hybridization and immunofluorescence, together with other 

control experiments (sense probe, neutralization and competition, RNase treatment, 

and anti-sense probe without initiator) confirmed the high specificity of the 

fluorescence in situ hybridization used in this study. Two sets of three different 

mRNAs for oxytocin, vasopressin and somatostatin or oxytocin, vasopressin and 

thyrotropin releasing hormone were successfully visualized via this new method. We 

believe that this modified protocol for multiple fluorescence in situ hybridization via 

hybridization chain reaction would allow researchers to visualize multiple target 

nucleic acids in the future.  
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Introduction 

In situ hybridization (ISH) is a technique used for the detection of specific nucleic 

acid sequences in cells or tissue sections. The ISH technique is based on the 

complementary binding of a nucleotide probe to a specific target nucleic acid. The 

probes are labeled with either radioactive-labeled or non-radioactive-labeled bases, 

then visualized in situ by either autoradiography or immunohistochemistry, 

respectively. The ISH technique is used extensively in basic research as well as 

having clinical diagnostic applications.  

In 1969, Gall and Pardue reported the localization of nucleic acids (ribosomal 

RNA) by ISH with a tritium-labeled RNA probe (Pardue and Gall 1969). Initially, 

radioactive nucleotide probes were used for ISH. As there are disadvantages to using 

radioactive nucleotide probes for ISH, non-radioactive nucleotide probes are now 

widely used. Non-radioactive probes can be used to visualize two or more mRNAs in 

the same specimen simultaneously. The advantages of this include a practical reason 

of keeping the tissue sections affixed to slides during hybridization and washing 

procedures, a particular problem with ISH on tissue samples (Wilcox, 2000; Brown, 

1998), as well as the possibility of incompatibility of reagents or the use of shorter 

DNA oligonucleotides for amplification, which then requires an assay re-optimisation. 

Generally, the sensitivity of the ISH technique using radioactive nucleotide probes is 

higher than that of using non-radioactive nucleotide probes (Forster et al. 1985; 

Dagerlind et al. 1992), but it is very difficult to detect two or more different mRNAs 

simultaneously. Researchers have been working to design a highly sensitive, non-

radioactive ISH technique able to detect two or more mRNAs in the same specimen 

simultaneously. A new ISH technique using hybridization chain reaction (HCR) 

would fulfill these requirements. Dirks and Pierce (2004) first introduced the concept 
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of HCR. Two stable species of DNA hairpins coexist in solution until the introduction 

of initiator strands trigger a cascade of hybridization events that form a nicked double 

helices, analogous to alternating copolymers (Dirks and Pierce 2004). HCR 

amplification has been applied to the detection of different targets, including nucleic 

acids (Dirks et al. 2004; Tang et al. 2012), proteins (Song et al. 2012; Zhao et al. 2012) 

and other small molecules (Han et al. 2013; Zhuang et al. 2013). HCR amplification 

cascades have been used to generate diverse output signals, including fluorescence 

(Choi et al. 2010; Zhu et al. 2013), chemiluminescence (Shimron et al. 2012; Wang et 

al. 2013), bioluminescence (Xu et al. 2013), and energy dissipation (Tang et al. 2012; 

Wang et al. 2012). Due to its high sensitivity, specificity and small molecule probes 

and hairpins of the HCR system, it is widely used for the detection of biomarkers. 

More recently HCR has been used together with other methods, such as with  the 

northern blot approach to demonstrate multiple micro-RNAs simultaneously 

(Schwarzkopf and Pierce 2016), as well as in intact-tissue transcriptional analysis  

(Sylwestrak et al. 2016; Nguyen et al. 2016), the detection of protein interactions and 

post-translational modifications in microscopy and in flow cytometry (Koos et al. 

2015). In 2014, Choi et al applied the HCR technique to multiple fluorescence ISH. 

This new ISH technique enabled simultaneous detecting of multiple target mRNAs. 

This new generation ISH protocol was designed to detect mRNAs in intact zebrafish 

embryos or mouse embryos and employed significantly milder conditions than 

previous HCR-amplified protocols. The length of the DNA oligonucleotide probe and 

hairpin set was 132bp and 72bp, respectively (Choi et al. 2014; Huss et al. 2015).of 

sare The sensitivity of in situ HCR depends on the number of labeled molecules 

number within the copolymers thatwhich are formed by the hairpins. The greater the 

number ofmore labeled molecules, the greater the more sensitivitye of the in situ HCR. 
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Generally each hairpin is labeled with a fluorescence molecule at 5’ or 3’. If the same 

length of copolymers can formed eitherby shorter or longer hairpins, the number of 

labeling molecules number will be greatermore if the hairpins are shorter. That is to 

say, the sensitivity of in situ HCR with shorter hairpin amplification will be higher 

than that with longer hairpins. Generally speaking, the smaller of the oligonucleotide 

probe/hairpins, the higher the capacityability of for tissue penetration, since.  That is 

to say, the smaller oligonucleotide probe/hairpins are easier to penetrate into the tissue 

more easily, especially those thick section or whole-mount samples. In addition, the 

cost of shorter oligonucleotide probe/hairpin synthesis is much cheaper than thatose 

of longer oligonucleotide probe/hairpin synthesis, especially over 100bp. For these 

reasons, in the present study, we investigated the use of a shorter oligonucleotide 

probe (89nt) and hairpin set (36nt) in the HCR amplification system. We found that 

brighter fluorescence was obtained when using the shorter (36-nt) hairpin set. The 

optimal parameters (HCR time and temperature, hairpin and salt concentration) for 

frozen tissue sectionsIn the present study, we introduce a simple, sensitive and 

specific protocol for the detection of three different mRNAs in frozen sections using 

this new-generation ISH technique.  under HCR amplification conditions of 

oligonucleotide probe (89nt) and hairpin set (36nt) are described in this study.  
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Materials and Methods  

Probe Synthesis  

The design of the oligonucleotide probes was reported in Choi et al (2014). DNA two 

initiator probes are 89-nt long (5’ 18-nt initiator, 4-nt spacer, 45-nt mRNA recognition 

sequence, 4-nt spacer, 3’ 18-nt initiator). Message RNAs are addressed by probe sets 

of three probes, each probe containing one that hybridizes at 45-nt binding sites. 

Probe sequences are displayed in Table 1. DNA probes were supplied by Sangon, 

Shanghai, China. DNAs probes were re-suspended in Tris-EDTA buffer (TE) at a 

concentrations of 1μM/L.  

HCR Hairpin Design and Synthesis  

The sequences of the hairpins sets were modified from those reported in Choi et al 

(2014).  DNA HCR hairpins are 36-nt long (6-nt toehold, 12-bp stem, 6-nt loop). 

DNA HCR hairpins were synthesized by Sangon, Shanghai. The standard DNA 

oligonucleotides were end-labeled with a fluorophore (3’-end for H1 and 5’-end for 

H2). To ensure that H1 and H2 form hairpin monomers, the strands were snap-cooled 

in 4×SSC (saline sodium citrate buffer) before use (heat at 95℃ for 90 s, cool to 

room temperature on the bench top for 30 min). All HCR hairpin sequences are 

shown in Table 2.  

Gel Electrophoresis   
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DNA HCRs in Figure 1 were performed in 4×SSC for 1h reactions with each hairpin 

at 500nM at 25℃. DNA hairpins were snap cooled separately at 5μM in 4×SSC. The 

oligonucleotide probes with initiators were diluted to 1μM in ultrapure water. In the 

HCR gel, each lane was prepared by mixing 5μL 8x SSC, 3μL of oligonucleotide 

probe with initiator, and 1μL of each hairpin to obtain a reaction volume of 10μL. 

each lane was prepared by mixing 10μL of 5μl 8×SSC, 3μL of oligonucleotide probe 

with initiator, and 1μL of each hairpin. When an initiator was absent (lane no 

initiator), 3μL of ultrapure water was added to bring the reaction volume to 10μL. The 

reactions were incubated at 25℃ for 1 h. The samples were supplemented with 2μL 

6×loading buffer (50% glycerol with bromophenol blue and xylene cyanol tracking 

dyes) and loaded into a 2% agarose gel. The gel was run at 100 V for 45 min at room 

temperature and imaged using a scanner (Tagon).  

Section Preparations  

All experimental procedures were approved by the Institutional Animal Care and Use 

Committee at Second Military Medical University. Twenty five adult Wistar rats 

(200–300 g) were used. The rats were anesthetized with sodium pentobarbitone and 

perfused through the aorta with 0.9% NaCl solution and 4% paraformaldehyde in 0.1 

mol/l L phosphate buffer pH 7.4. The brains were removed, and the hypothalamus 

was microdissected out immediately and immersed in 4% paraformaldehyde in 0.1 M 

phosphate-buffered saline (PBS, pH 7.2) for 4-6 h. The hypothalamus blocks were 

then transferred to 25% sucrose in PBS and kept in the solution until they sank to the 

bottom. Thereafter, the hypothalamus blocks were rapidly frozen in a Leica cryostat. 

Coronal sections (25μm) of the hypothalamus were cut and floated in PBS.  

In Situ Hybridization 
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The protocol for ISH was modified from a protocol used before (Xiang et al., 2001). 

Briefly, floating rat hypothalamic sections were washed 3×5 min in 0.01 mol/l L PBS 

pH7.2, incubated in 0.4% Triton X-100/PBS for 10 min. The sections were then 

incubated in protease K (5.0μg/ml) in PBS for 10 min at 37 °C. The activity of 

protease K was stopped by fixation in 4% paraformaldehyde for 5 min, followed by 

2×3 min washes in PBS to remove fixative from the sections. The sections were 

washed in 0.6 mol/l L sodium chloride and 0.06 mol/l L sodium citrate (2×SSC) for 

10 min. Cy3-labeled or FITC-labeled oxytocin (OT), AMCA-labeled vasopressin 

(VP), Cy3-labeled somatostatin (SST) or OT, thyrotropin releasing hormone (TRH) 

oligonucleotide probes were added to hybridization buffer containing 50% formamide, 

10% dextran sulfate, 0.3 mol/l NaCl, 1×Denhardt's solution, 0.05 mol/l Tris–HCl (pH 

8.0), 1 mmol/l L EDTA and 250 μg/ml E. coli tRNA (RNase-free). Hybridization was 

carried out for 16 h at 45°C in a hybridization oven. The sections were washed in 

2×SSC, 1×SSC, 0.5×SSC, 0.25×SSC for 10 min at 37°C, respectively. Finally the 

sections were rinsed in 4×SSC for 10 min at room temperature before HCR.  

Hybridization Chain Reaction  

1µl of each fluorescently labeled hairpin (10µm/L) in 4×SSC was heated at 95 °C for 

90 seconds and allowed to cool to room temperature on the bench top for 30min. The 

snap-cooled hairpins were added at room temperature to 500μl of 4x SSC to obtain a 

final concentration of 20nM/LThe snap-cooled hairpins were added to 500µl (20nM/L) 

of 4×SSC at room temperature, which was called the amplification mixture. The 4x 

SSC solution was removed from the sections and replaced by the 500μl amplification 

mixture. HCRybridization chain reaction on the sections was preformed for 1-2 hours 

at 25°C.The sections incubated in 4×SSC were added to 500µl amplification mixture 

for 1-2 hours at 25°C.  The sections were then washed 3x5 min in 0.01 mol/l PBS. 
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Finally the sections were mounted on slides, dried and covered with 50% glycerin 

PBS.   

Eight different times for HCR amplification (0min, 5min, 10min, 30min, 1h, 2h, 

8h and 16h), eight different concentrations of hairpins (0.625, 1.25, 2.5, 5, 10, 20, 40, 

80nM/L), eight different incubation temperatures (4, 15, 20, 25, 30, 37, 45, 50°C), 

and six different salt concentrations in amplification buffer (0.5, 1, 2, 4, 8, 16×SSC, 

4×SSC+10% dextran sulphate, 8×SSC+10% dextran sulphate) were tried  to obtain 

the optimal parameters for the HCR.  

Combined Use of the New-generation In Situ Hybridization and 

Immunofluorescence  

In order to evaluate the specificity of ISH, a combination of the use of a new 

generation in situ hybridizationISH and immunofluorescence was carried out. The 

protocol was as follows: after amplification of HCR, the sections were washed 3-5min 

in PBS, and then preincubated in a blocking solution (10% normal bovine serum, 

0.2% Triton X-100, 0.4% sodium azide in 0.01 mol/l PBS pH 7.2) for 30 min 

followed by incubation with the primary antibodies (VP (1:2,000, rabbit polyclonal 

antibody, Abcam, ab39363); OT (1:1,000, rabbit polyclonal antibody, Abcam, 

ab2078)), at room temperature overnight. Subsequently, the sections were incubated 

with Cy3-conjugated donkey anti-rabbit IgG (Jackson, 711-165-152) diluted 1:400. 

All incubations were separated by 5-10 min washes in PBS.    

Control Experiments  

In order to confirm the specificity of mRNA signals, a variety of control experiments 

for ISH were carried out.  1. Anti-sense probe without relative initiator control:  some 

sections were hybridized with antisense probes (VP, OT, TRH and ST) without 

relative initiator sequences (the sequences are shown in Table 1). Other experimental 
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conditions were the same as mentioned above. 2. RNase-treated control: some 

sections were treated with 20μg/RNase A in PBS at 37°C for 30min before 

hybridization. Thereafter these sections were used to visualize mRNAs of VP, OT, 

TRH and SST. 3. Sense probes with relative initiators: some sections were hybridized 

with sense probes (VP, OT, TRH and SST) with relative initiator sequences (see 

Table 1). Other experimental conditions were the same as mentioned above. 4. 

Neutralization and competition controls: the neutralization and competition assays of 

OT, VP, TRH and SST probes were carried out as follows. Different combinations of 

sense and antisense probes, with relative initiator concentrations (μm), were used. 

Sense probe: antisense probe = 8:1; 4:1; 2:1; 1:1 and 0:1. Other experimental 

conditions were the same as mentioned above.   

Photomicroscopy  

Images were taken with a Nikon digital camera DXM1200 (Nikon, Japan) attached to 

a Nikon Eclipse E600 microscope (Nikon). Images were imported into a graphics 

package (Adobe Photoshop 5.0, USA). 

Image Analysis  

The value of the average area optical density (AAOD) for fluorescence images from 

the supraoptic nucleus of the hypothalamus was measured using an NIS-elements 

D3.1 system (Nikon, Japan). Five sections were used for each experiment and the 

mean number of these five sections was calculated. Five separate experiments were 

carried out.  

Statistical analysis  

Results are expressed as mean ± SEM (n=5). Values were analyzed using a one-way 

analysis of variance (ANOVA) followed by Dunnett’s post hoc test. p<0.05 was 

considered to be statistically significant. 
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Results  

HCR analysis showed that the three sets of hairpins for OT, VP and SST/TRH 

oligonucleotide probes were metastable in the absence of their oligonucleotide probes 

with initiators (lane no initiator) and the formation of HCR polymers when mixed 

with their initiators (lane initiator) and formed HCR polymers when mixed with their 

initiators (lane initiator)  (Figure 1).  

In order to obtain the optimal time of HCR amplification, we used the same 

experimental parameters: HCR amplification temperature was 25°C; hairpins 

concentration was 20nM/L; HCR amplification buffer was 4×SSC. No fluorescence 

hybridization signals for OT mRNAs were detected before amplification (Figure 2A). 

Five mins after amplification, weak signals were detected in some neurons of the 

supraoptic nucleus. After 10 mins, the number of OT mRNA positive neurons 

increased significantly, the signals were mainly detected in the cytoplasma and almost 

no signals were detected in the nucleus of the neurons. After 30 mins, the 

fluorescence intensity increased significantly. After 1 hour, the fluorescence intensity 

was strong.  Extending the amplification for up to 16 hr did not significantly increase 

fluorescence intensity further (Figure 2). AAOD at the different experimental 

amplification times are summarized in Figure 2.  

In order to obtain the optimal concentration of hairpins in HCR amplification, we 

used the same experimental parameters mentioned above and an amplification time of 

1 hour. Nine different concentrations of hairpins (80nM, 40nM, 20nM, 10nM, 5nM, 

2.5nM, 1.25nM, 0.625nM and 0nM) were used. The results clearly showed that the 

fluorescence intensity increased with increasing hairpins concentration from 0nM to 

20nM. Thereafter, fluorescence intensity did not change significantly with increasing 
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hairpins concentration. AODD at the different experimental hairpins concentrations 

are summarized in Figure 3.  

In order to obtain the optimal temperature of HCR amplification, we used the 

same experimental parameters mentioned above, an amplification time of 1 hour and 

hairpins concentration of 20nM. Eight different temperatures for the HCR 

amplification (4, 15, 20, 25, 30, 37, 45 and 50°C) were used. The results showed that 

the fluorescence intensity increased by increasing the HCR amplification temperature 

from 4 to 25°C. The fluorescence intensity did not change significantly between 25-

45°C, but the intensity decreased at 50°C. AODD at the different experimental 

temperatures are summarized in Figure 4. 

In order to obtain the optimal salt concentration for the HCR amplification buffer, 

we used the same experimental parameters mentioned above, the amplification time 

was 1 hour and the hairpins concentration was 20nM. Six different salt concentrations 

(0.5×SSC, 1×SSC, 2×SSC, 4×SSC, 8×SSC, and 16×SSC) were used. The results 

showed that there was no fluorescence signal when the salt concentration was 

0.5×SSC, moderate fluorescence signals were obtained when the salt concentration 

was 1×SSC, and strong fluorescence signals were obtained when the salt 

concentration was 2×SSC. There was no difference in the fluorescence intensities 

obtained when the salt concentration increased from 2 up to 16×SSC. AODD at the 

different experimental concentrations of salt in the HCR amplification buffer are 

summarized in Figure 5.  

Under the same optimal parameters (amplification temperature was 25°C; HCR 

amplification buffer was 4×SSC; hairpins concentration was 20nM/L; HCR 

amplification buffer was 4×SSC; amplification time was 1 hour). We compared the 

fluorescence intensity of OT mRNA positive neurons in the supraoptic nucleus, which 
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was visualized with differential lengths of hairpins (36-nt and 72-nt). The result 

showed that the higher fluorescence signals were obtained when using shorter 

hairpins (Figure 6).   

After the main experimental parameters for this new generation ISH protocol 

were optimized, we carried out the combined use of this new ISH and 

immunofluorescence to visualize VP and OT mRNAs and their relative peptides 

within the same cell. The results showed that ISH fluorescence signals of OT mRNAs 

(green) and VP mRNAs (blue) were only detected in the neuronal cell bodies with OT 

(red) or VP (red) immunoreactivities, respectively (Figure 67). We found that 100% 

OT- and VP-positive cells visualized by ISH fluorescence, were also immunoreactive 

for OT and VP, respectively. The reverse was also true, 100% immunoreactive cells 

were also positive for ISH fluorescence. This demonstrated that this new generation 

ISH technique displayed a high level of specificity.   

Under the optimal experimental parameters identified in this study (a HCR 

amplification temperature of 25°C; hairpins concentration of 20nM/L; HCR 

amplification buffer 4×SSC; HCR time of 1-2 hours) we successfully and clearly 

visualized three different neuropeptide mRNAs from the same section simultaneously 

(Figure 7 8 and 89). We used two sets of oligonucleotide probes (VP, OT, 

somatostain or VP, OT, TRH) to detect VP, OT and SST or TRH mRNAs. The results 

showed that although the hybridization signals for VP (blue), OT (green) and 

somatostatin SST (red) or TRH (red) mRNAs could be detected in the same sections 

of rat hypothalamus, none of them could be detected in the same neuron (Figure 7 8 

and 89). Occasionally VP and OT mRNAs could be detected in the same neuron of 

the supraoptic nucleus (SON), especially in the dorsal part of this nucleus (Figure 

7d8d).  
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In control experiments, no ISH signals were detected in the sections hybridized with 

antisense probes without relative initiator sequences and sense probes with relative 

initiators. Similarly, no ISH signals were detected in RNase-treated sections. In 

neutralization and competition experiments of OT, VP, TRH and SST probes, no 

signals were detected when the ratio of sense and antisense probe concentrations was 

8:1 or 4:1, while weak or moderate ISH signals were detected when the ratio was 2:1 

or 1:1, respectively. Strong ISH signals were detected when the ratio was 0:1 

(supplementary Figure 1-4).  
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Discussion 

Double or multiple hybridizations have been successfully carried out by many 

researchers (Bresser et al. 1987; Cremer et al. 1986; Haase et al. 1985; Hopman et al. 

1986, 1988; Nederlof et al. 1989, 1990; Wiegant et al. 1993). This is important in the 

fields of cytogenetics, oncology, and cell biology because of the increasing interest in 

the demonstration of multiple DNA or RNA targets in the same cell. In order to 

achieve this goal, researchers usually used different probes labeled with different 

haptens to hybridize, and finally the combined use of three different 

immunohistochemical affinity systems to visualize the hybrids (Nederlof et al. 1989, 

1990).  Even nucleotide probes have been directly labeled with fluorescents (Wiegant 

et al. 1993; Kosman et al. 2004; Chan et al. 2005; Raj et al. 2008). The sensitivity of 

previously used multiple hybridization protocols was low and their applications were 

limited. With different haptens labeled RNA probes, different antibodies for haptens 

and tyramide signal amplification (TSA) system, two- and three-color fluorescent ISH 

were successfully carried out in whole-mount zebrafish (Lauter et al. 2011a, 2011b). 

The drawback of this system is that two or three colors could not be demonstrated 

simultaneously. A step was needed to inactivate the perioxidase activity before the 

next detection round could be carried out. Recently, several highly sensitive FISH 

approaches have been were reported, including as branched DNA ISH (Player et al. 

2001; Kenny et al. 2002), RNAscope (Wang et al. 2012,  2014; Grabinski et al. 2015), 

and ISH chain reaction (Choi et al. 2010, 2014). ISH chain reaction was used with the 

highly sensitive multiple fluorescence ISH technique, which enabled the simultaneous 

mapping of multiple target mRNAs within intact zebrafish embryos (Choi et al. 2014), 

and within intact mouse embryos (Huss et al. 2015) simultaneously. With this 

approach, DNA/RNA probes complementary to target mRNAs trigger chain reactions 
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in which metastable fluorophore-labeled DNA/RNA hairpins self-assemble into 

fluorescent amplification polymers. The formation of the specific, high polymers 

enhances greatly the sensitivity of multiple fluorescence ISH. The authors claimed 

that this new protocol addresses a longstanding challenge to scientists. In the present 

study, a shorter oligonucleotide probe (89nt) and hairpin set (36nt) was used in the 

HCR amplification system and we found that a brighter fluorescence was obtained 

when using the shorter (36-nt) hairpin set compared to the longer (72-nt) hairpin set. 

Using these conditions,In these two reports, intact zebrafish or mouse embryos were 

used. For this technique to be used for frozen tissue sections, the protocol would need 

to be modified. With this idea, we modified this new multiple fluorescence ISH 

protocol.  

      The speed of the polymer formation through HCR was quick, such that 1 to 2 

hours of HCR was sufficient for HCR amplification. We found that above 20nM of 

hairpins was sufficient for ideal fluorescence signals. The optional temperature for 

HCR was found to be between 25 and 45℃. The optional salt concentration in the 

amplification buffer proved to be above 2×SSC. As there were no significant 

differences in fluorescence signal intensity when no dextran sulfate or 10% dextran 

sulfate was used, dextran sulfate was not used in our HCR amplification buffer.  

      The length of hairpins is an important parameter of the HCR. Usually the ends (3’ 

or 5’) of the hairpin oligonucleotides arewere labeled with a fluorophore. Thus, the 

longer the hairpin oligonucleotide, the fewer the labeling fluorophores of the HCR 
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polymer. The number of fluorophores in the HCR polymers determines the sensitivity 

of the fluorescence ISH. Shorter hairpin oligonucleotides result in a greater number of 

fluorophores in a certain length of polymer. In order to obtain the maximum number 

of fluorophores in a certain length polymer, 36-nt length hairpins sets were designed. 

In this study these 36-nt length hairpins sets were confirmed to be metastable without 

initiators and these hairpins assembled into HCR polymers after being mixed with the 

initiators linked with oligonucleotide probes (Figure 1). These hairpins were much 

shorter than those used previously (Choi et al. 2014).  

In this study the combined use of fluorescence ISH and immunofluorescence 

was carried out in order to confirm the specificity of the fluorescence ISH. The results 

showed that 100% of the VP or OT immunoreactive neurons were also labeled with 

their relative mRNA signals, and the reverse was also true, 100% of OT and VP 

positive cells visualized by ISH fluorescence were also positive for immunoreactivity 

to OT and VP. Thus, no false positive cells were detected in this study. Very low 

background signals were obtained. These data show that the specificity of 

fluorescence ISH used in this study is high.  

No ISH signals ISH were detected in any of the control experiments, including 

anti-sense probe without relative initiator, RNase-treated, sense probes with relative 

initiators, which confirmed the specificity of the VP, OT, TRH and SST probes. 
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Neutralization and competition assays further confirmed that the probes for VP, OT, 

TRH and SST were specific for their target mRNAs.  

In summary, a set of optimal parameters for multiple fluorescence ISH via 

amplification using HCR in frozen tissue sections are described. The combined use of 

fluorescence ISH and immunofluorescence was carried out to confirm that the 

specificity of fluorescence ISH used in this study was high. Two sets of three different 

mRNAs for VP, OT, SST or VP, OT, TRH were successfully visualized via this new 

fluorescence ISH technique. We believe that this modified multiple fluorescence ISH 

via HCR protocol will allow researchers to visualize multiple target nucleic acids in 

frozen tissue sections in the future.   
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Figure legends  

Figure 1 Hybridization chain reactions were run with 500nM of each hairpin in 

4×SSC at 25°C for 1 hour. In the lanes with no initiator, the hairpins were metastable, 

as no visible polymers were detected. In the lanes with initiator, almost all the 

hairpins (length=36bp) assembled into hybridization chain reaction polymers (most of 

them were 500 to 1000bp) as no visible remaining hairpins were detected. M is DNA 

marker. H1/2 for OT (length=36bp) was hairpin 1 and hairpin 2 for OT 

oligonucleotide probe with the initiator. H1/2 for VP (length=36bp) was hairpin 1 and 

hairpin 2 for VP oligonucleotide probe with the initiator. H1/2 for SST (length=36bp) 

was hairpin 1 and hairpin 2 for SST/TRH oligonucleotide probes with the initiator. 

H1/2 for OT (length=72bp) was 72-nt hairpin 1 and 72-nt hairpin 2 for OT 

oligonucleotide probe with the longer initiator (36-nt), DNA ladders were observed in 

the lane with initiator.  

 

Figure 2  Fluorescence intensity of the supraoptic nucleus (SON) of the hypothalamus 

after different times of hybridization chain reaction amplification.  No fluorescence 

hybridization signals of OT mRNAs were detected before amplification (A). Weak 

signals was detected in A after 5 min (B); the number of positive neurons increased 

significantly after 10 min (C);  the fluorescence intensity increased significantly after 

30min (D), and strong fluorescence signals were detected after 1 hour (E).  F, G, H 

showed positive neurons after 2 h, 8h and 16h, respectively.  The inserted image is a 

high magnification picture taken from the region indicated by a star in A to H.  

AAOD at the different experimental times are summarized in I. All scale bar =160μm.  
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Figure 3  Neurons positive for OT mRNA hybridization chain reaction signals and 

AAOD of SON after 1 hour amplification at 25ºC with different hairpin 

concentrations of 0.625nM (A), 1.25nM (B), 2.5nM (C), 5nM (D), 10nM(E), 

20nM(F), 40nM (G) and 80nM (H). The results showed that the fluorescence intensity 

increased with increased hairpins concentrations from 0nM to 20nM. Thereafter, 

fluorescence intensity did not change significantly with increased hairpins 

concentrations. The inserted image is a high magnification picture taken from the 

region indicated by a star in A to H. I shows AAOD of SON at different hairpins 

concentration.  All scale bars =160μm.  

 

Figure 4  Neurons positive for OT mRNA hybridization chain reaction signals and 

AAOD of SON after 1 hour amplification at different incubation temperatures with a 

hairpin concentration of 20nM. The results showed that fluorescence intensity 

increased with increasing incubation temperatures from 4 to 25ºC (A, B, C, D). 

Fluorescence intensity did not change significantly from 25 to 45ºC (E, F, G). The 

intensity decreased when the incubation temperature was 50°C (H). The inserted 

image is a high magnification picture taken from the region indicated by a star in A to 

H. I shows AAOD of SON at different hairpins concentrations. All scale bars = 

160μm.  

 

Figure 5  Neurons positive for OT mRNA hybridization chain reaction signals and 

AAOD of SON after 1 hour amplification at 25ºC with a hairpin concentration of 

20nM in different salt concentrations of SSC. The results showed that the 

fluorescence intensity increased with increasing salt concentrations from 0.5×SSC to 

4×SSC (A, B, C, D). Thereafter, the fluorescence intensity did not change 
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significantly with increased salt concentrations from 4×SSC to 16×SSC (D, E, F). G 

and H show the fluorescence intensity of SON in 4×SSC and 8×SSC with added 10% 

dextran sulphate, respectively. The inserted image is a high magnification picture 

taken from the region indicated by a star in A to H.  I shows AAOD of SON under the 

conditions above.  All scale bars =160μm. 

 

Figure 6  Neurons positive for OT mRNA hybridization chain reaction signals and 

AAOD of SON under the same optimal amplification parameters with different 

lengths of hairpins (36-nt and 72-nt) (A and B). The inserted image is a high 

magnification picture taken from the region indicated by a star in A and B. C shows 

AAOD of SON under the conditions above. The results show that higher fluorescence 

signals were obtained when using shorter hairpins. All scale bars =160μm.  

 

Figure 6  7  Co-existence of OT mRNA (green) and peptide immunoreactivity (red) 

(A, B, C) and VP mRNA (blue) and peptide immunoreactivity (red) (D, E, F) detected 

by the combined used of hybridization chain reaction and immunofluorescence. A is 

OT mRNA hybridization chain reaction signals; B is immunoreactivity to OT; C is 

the merged image of A and B. D is VP mRNA signals; E is immunoreactivity to VP;  

F is the merged image of D and E. All scale bars =160μm.  

 

Figure 7  8  Detection of OT (green), SST (red) and VP (blue) mRNAs in SON (A, B, 

C, D) and paraventricular nucleus (PVN) (E, F, G, H) with three color fluorescence in 

situ hybridization via hybridization chain reaction amplification. A, B, C show OT, 

VP, and SST mRNA hybridization signals of SON, respectively; D is the merged 

image of A, B  and C (arrows indicate double-labeled cells).  E, F, G shows OT, VP, 
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and SST mRNA hybridization signals of PVN, respectively; H is the merged image of 

E, F and G. Note that no double or triple labeling was detected in D and H. All scale 

bars =80μm. 

 

Figure 8  9  Detection of OT (green), TRH (red) and VP (blue) mRNAs in SON (A, B, 

C, D) and PVN (E, F, G, H) with three color fluorescence in situ hybridization via 

hybridization chain reaction amplification. A, B, C show OT, TRH, and VP mRNA 

hybridization signals of SON, respectively; D is the merged image of A, B and C.  E, 

F, G show OT, TRH, and VP mRNA hybridization signals of PVN, respectively; H is 

the merged image of E, F and G. Note that no double or triple labelled neurons were 

detected.  All scale bars =80μm.  


