523 research outputs found
A cross-cultural investigation into students' evaluation of university teaching
This study uses the applicability paradigm of Marsh (1981) to examine the validity of two evaluation instruments and their underlying model of teaching effectiveness across seven countries with diverse cultures and higher education systems. The results from the seven studies support the reliability, appropriateness, and to some degree convergent and discriminant validities of the two instruments. Similar patterns of item salience and discrimination between good and poor lecturers are also obtained. Hence, the similarity of the results from diverse academic settings generally lends support to the applicability and the cross-cultural validity of these two instruments and their underlying model of teaching. In addition, the finding that Hong Kong, Taiwan, and China are each relatively more similar to the West than among themselves may reflect the fact that their higher education systems are
to a certain extent modeled after those of the West.published_or_final_versio
Towards atomically precise manipulation of 2D nanostructures in the electron microscope
Despite decades of research, the ultimate goal of nanotechnology—top-down manipulation of individual atoms—has been directly achieved with only one technique: scanning probe microscopy. In this review, we demonstrate that scanning transmission electron microscopy (STEM) is emerging as an alternative method for the direct assembly of nanostructures, with possible applications in plasmonics, quantum technologies, and materials science. Atomically precise manipulation with STEM relies on recent advances in instrumentation that have enabled non-destructive atomicresolution imaging at lower electron energies. While momentum transfer from highly energetic electrons often leads to atom ejection, interesting dynamics can be induced when the transferable kinetic energies are comparable to bond strengths in the material. Operating in this regime, very recent experiments have revealed the potential for single-atom manipulation using the Ångströmsized electron beam. To truly enable control, however, it is vital to understand the relevant atomicscale phenomena through accurate dynamical simulations. Although excellent agreement between experiment and theory for the specific case of atomic displacements from graphene has been recently achieved using density functional theory molecular dynamics, in many other cases quantitative accuracy remains a challenge. We provide a comprehensive reanalysis of available experimental data on beam-driven dynamics in light of the state-of-the-art in simulations, and identify important targets for improvement. Overall, the modern electron microscope has great potential to become an atom-scale fabrication platform, especially for covalently bonded 2D nanostructures. We review the developments that have made this possible, argue that graphene is an ideal starting material, and assess the main challenges moving forward
Antitumor Activity of Pembrolizumab in Biomarker-Unselected Patients With Recurrent and/or Metastatic Head and Neck Squamous Cell Carcinoma: Results From the Phase Ib KEYNOTE-012 Expansion Cohort.
Purpose Treatment with pembrolizumab, an anti-programmed death-1 antibody, at 10 mg/kg administered once every 2 weeks, displayed durable antitumor activity in programmed death-ligand 1 (PD-L1) -positive recurrent and/or metastatic (R/M) head and neck squamous cell carcinoma (HNSCC) in the KEYNOTE-012 trial. Results from the expansion cohort, in which patients with HNSCC, irrespective of biomarker status, received a fixed dose of pembrolizumab at a less frequent dosing schedule, are reported. Patients and Methods Patients with R/M HNSCC, irrespective of PD-L1 or human papillomavirus status, received pembrolizumab 200 mg intravenously once every 3 weeks. Imaging was performed every 8 weeks. Primary end points were overall response rate (ORR) per central imaging vendor (Response Evaluation Criteria in Solid Tumors v1.1) and safety. Secondary end points included progression-free survival, overall survival, and association of response and PD-L1 expression. Patients who received one or more doses of pembrolizumab were included in analyses. Results Of 132 patients enrolled, median age was 60 years (range, 25 to 84 years), 83% were male, and 57% received two or more lines of therapy for R/M disease. ORR was 18% (95% CI, 12 to 26) by central imaging vendor and 20% (95% CI, 13 to 28) by investigator review. Median duration of response was not reached (range, ≥ 2 to ≥ 11 months). Six-month progression-free survival and overall survival rates were 23% and 59%, respectively. By using tumor and immune cells, a statistically significant increase in ORR was observed for PD-L1-positive versus -negative patients (22% v 4%; P = .021). Treatment-related adverse events of any grade and grade ≥ 3 events occurred in 62% and 9% of patients, respectively. Conclusion Fixed-dose pembrolizumab 200 mg administered once every 3 weeks was well tolerated and yielded a clinically meaningful ORR with evidence of durable responses, which supports further development of this regimen in patients with advanced HNSCC
Internet of Things: Current Challenges in the Quality Assurance and Testing Methods
Contemporary development of the Internet of Things (IoT) technology brings a
number of challenges in the Quality Assurance area. Current issues related to
security, user's privacy, the reliability of the service, interoperability, and
integration are discussed. All these create a demand for specific Quality
Assurance methodology for the IoT solutions. In the paper, we present the state
of the art of this domain and we discuss particular areas of system testing
discipline, which is not covered by related work sufficiently so far. This
analysis is supported by results of a recent survey we performed among ten IoT
solutions providers, covering various areas of IoT applications.Comment: 10 pages Internet of Things (IoT
Cascaded Thinning in Upscale and Downscale Representation for EEG Signal Processing.
Smoothing filters are widely used in EEG signal processing for noise removal while preserving signals' features. Inspired by our recent work on Upscale and Downscale Representation (UDR), this paper proposes a cascade arrangement of some effective image-processing techniques for signal filtering in the image domain. The UDR concept is to visualize EEG signals at an appropriate line width and convert it to a binary image. The smoothing process is then conducted by skeletonizing the signal object to a unit width and projecting it back to the time domain. Two successive UDRs could result in a better-smoothing performance, but their binary image conversion should be restricted. The process is computationally ineffective, especially at higher line width values. Cascaded Thinning UDR (CTUDR) is proposed, exploiting morphological operations to perform a two-stage upscale and downscale within one binary image representation. CTUDR is verified on a signal smoothing and classification task and compared with conventional techniques, such as the Moving Average, the Binomial, the Median, and the Savitzky Golay filters. Simulated EEG data with added white Gaussian noise is employed in the former, while cognitive conflict data obtained from a 3D object selection task is utilized in the latter. CTUDR outperforms its counterparts, scoring the best fitting error and correlation coefficient in signal smoothing while achieving the highest gain in Accuracy (0.7640%) and F-measure (0.7607%) when used as a smoothing filter for training data of EEGNet
Temporal and Spatial Dynamics of Carbon Fixation by Moso Bamboo (Phyllostachys pubescens) in Subtropical China
To study the temporal and spatial dynamics of carbon fixation by Moso bamboo (Phyllostachys pubescens) in subtropical China, carbon fixation of leaves within the canopy of P. pubescens was measured with a LI-6400 portable photosynthesis system. The results showed that the capability of carbon fixation of P. pubescens leaves had obvious temporal and spatial dynamic variations. It was revealed that there were two peak periods and two low periods in the season variation of carbon fixation capability. Data also revealed that the capability of carbon fixation by five-year-old P. pubescens was more than that of one-year-old and three-year-old. Daily and seasonal carbon fixation showed a negative correlation with the CO2 concentration. The temporal and spatial dynamics of carbon fixation by P. pubescens described above provided a scientific basis for development of technologies in bamboo timber production
Improved measurement of the reactor antineutrino flux and spectrum at Daya Bay
published_or_final_versio
Measurement of electron antineutrino oscillation based on 1230 days of operation of the Daya Bay experiment
published_or_final_versio
- …
