277 research outputs found
Human pluripotent stem cell-derived mesenchymal stem cells prevent allergic airway inflammation in mice.
published_or_final_versio
Higher-order multipole amplitude measurement in ψ ′→γχ c2
Using 106×106 ψ ′ events collected with the BESIII detector at the BEPCII storage ring, the higher-order multipole amplitudes in the radiative transition ψ ′→γχ c2→γπ +π -/γK +K - are measured. A fit to the χ c2 production and decay angular distributions yields M2=0.046±0. 010±0.013 and E3=0.015±0.008±0.018, where the first errors are statistical and the second systematic. Here M2 denotes the normalized magnetic quadrupole amplitude and E3 the normalized electric octupole amplitude. This measurement shows evidence for the existence of the M2 signal with 4.4σ statistical significance and is consistent with the charm quark having no anomalous magnetic moment. © 2011 American Physical Society.published_or_final_versio
Two-photon widths of the χ c0,2 states and helicity analysis for χ c2→γγ
Based on a data sample of 106×106 ψ ′ events collected with the BESIII detector, the decays ψ ′→γχ c0,2, χ c0,2→γγ are studied to determine the two-photon widths of the χ c0,2 states. The two-photon decay branching fractions are determined to be B(χ c0→γγ)=(2. 24±0.19±0.12±0.08)×10 -4 and B(χ c2→γγ)=(3.21±0.18±0. 17±0.13)×10 -4. From these, the two-photon widths are determined to be Γ γγ(χ c0)=(2. 33±0.20±0.13±0.17)keV, Γ γγ(χ c2)=(0.63±0.04±0. 04±0.04)keV, and R=Γ γγ(χ c2)/ Γ γγ(χ c0)=0.271±0. 029±0.013±0.027, where the uncertainties are statistical, systematic, and those from the PDG B(ψ ′→γχ c0,2) and Γ(χ c0,2) errors, respectively. The ratio of the two-photon widths for helicity λ=0 and helicity λ=2 components in the decay χ c2→γγ is measured for the first time to be f 0/2=Γγγλ= 0(χ c2)/Γγγλ=2(χ c2)=0. 00±0.02±0.02. © 2012 American Physical Society.published_or_final_versio
BMP4 induction of trophoblast from mouse embryonic stem cells in defined culture conditions on laminin
Because mouse embryonic stem cells (mESCs) do not contribute to the formation of extraembryonic placenta when they are injected into blastocysts, it is believed that mESCs do not differentiate into trophoblast whereas human embryonic stem cells (hESCs) can express trophoblast markers when exposed to bone morphogenetic protein 4 (BMP4) in vitro. To test whether mESCs have the potential to differentiate into trophoblast, we assessed the effect of BMP4 on mESCs in a defined monolayer culture condition. The expression of trophoblast-specific transcription factors such as Cdx2, Dlx3, Esx1, Gata3, Hand1, Mash2, and Plx1 was specifically upregulated in the BMP4-treated differentiated cells, and these cells expressed trophoblast markers. These results suggest that BMP4 treatment in defined culture conditions enabled mESCs to differentiate into trophoblast. This differentiation was inhibited by serum or leukemia inhibitory factor, which are generally used for mESC culture. In addition, we studied the mechanism underlying BMP4-directed mESC differentiation into trophoblast. Our results showed that BMP4 activates the Smad pathway in mESCs inducing Cdx2 expression, which plays a crucial role in trophoblast differentiation, through the binding of Smad protein to the Cdx2 genomic enhancer sequence. Our findings imply that there is a common molecular mechanism underlying hESC and mESC differentiation into trophoblast
Association between RUNX3 promoter methylation and gastric cancer: a meta-analysis
<p>Abstract</p> <p>Background</p> <p>Runt-related transcription factor 3 (RUNX3) is a member of the runt-domain family of transcription factors and has been reported to be a candidate tumor suppressor in gastric cancer. However, the association between RUNX3 promoter methylation and gastric cancer remains unclear.</p> <p>Methods</p> <p>We systematically reviewed studies of RUNX3 promoter methylation and gastric cancer published in English or Chinese from January 2000 to January 2011, and quantified the association between RUNX3 promoter methylation and gastric cancer using meta-analysis methods.</p> <p>Results</p> <p>A total of 1740 samples in 974 participants from seventeen studies were included in the meta-analysis. A significant association was observed between RUNX3 promoter methylation and gastric cancer, with an aggregated odds ratio (OR) of 5.63 (95%CI 3.15, 10.07). There was obvious heterogeneity among studies. Subgroup analyses (including by tissue origin, country and age), meta-regression were performed to determine the source of the heterogeneity. Meta-regression showed that the trend in ORs was inversely correlated with age. No publication bias was detected. The ORs for RUNX3 methylation in well-differentiated <it>vs </it>undifferentiated gastric cancers, and in intestinal-type <it>vs </it>diffuse-type carcinomas were 0.59 (95%CI: 0.30, 1.16) and 2.62 (95%CI: 1.33, 5.14), respectively. There were no significant differences in RUNX3 methylation in cancer tissues in relation to age, gender, TNM stage, invasion of tumors into blood vessel or lymphatic ducts, or tumor stage.</p> <p>Conclusions</p> <p>This meta-analysis identified a strong association between methylation of the RUNX3 promoter and gastric cancer, confirming the role of RUNX3 as a tumor suppressor gene.</p
Role of the Epigenetic Regulator HP1γ in the Control of Embryonic Stem Cell Properties
The unique properties of embryonic stem cells (ESC) rely on long-lasting self-renewal and their ability to switch in all adult cell type programs. Recent advances have shown that regulations at the chromatin level sustain both ESC properties along with transcription factors. We have focused our interest on the epigenetic modulator HP1γ (Heterochromatin Protein 1, isoform γ) that binds histones H3 methylated at lysine 9 (meH3K9) and is highly plastic in its distribution and association with the transcriptional regulation of specific genes during cell fate transitions. These characteristics of HP1γ make it a good candidate to sustain the ESC flexibility required for rapid program changes during differentiation. Using RNA interference, we describe the functional role of HP1γ in mouse ESC. The analysis of HP1γ deprived cells in proliferative and in various differentiating conditions was performed combining functional assays with molecular approaches (RT-qPCR, microarray). We show that HP1γ deprivation slows down the cell cycle of ESC and decreases their resistance to differentiating conditions, rendering the cells poised to differentiate. In addition, HP1γ depletion hampers the differentiation to the endoderm as compared with the differentiation to the neurectoderm or the mesoderm. Altogether, our results reveal the role of HP1γ in ESC self-renewal and in the balance between the pluripotent and the differentiation programs
Experimental Study on Thermal Conductivity and Hardness of Cu and Ni Nanoparticle Packed Bed for Thermoelectric Application
Cyclen-Based Cationic Lipids for Highly Efficient Gene Delivery towards Tumor Cells
Gene therapy has tremendous potential for both inherited and acquired diseases. However, delivery problems limited their clinical application, and new gene delivery vehicles with low cytotoxicity and high transfection efficiency are greatly required.In this report, we designed and synthesized three amphiphilic molecules (L1-L3) with the structures involving 1, 4, 7, 10-tetraazacyclododecane (cyclen), imidazolium and a hydrophobic dodecyl chain. Their interactions with plasmid DNA were studied via electrophoretic gel retardation assays, fluorescent quenching experiments, dynamic light scattering and transmission electron microscopy. The in vitro gene transfection assay and cytotoxicity assay were conducted in four cell lines.Results indicated that L1 and L3-formed liposomes could effectively bind to DNA to form well-shaped nanoparticles. Combining with neutral lipid DOPE, L3 was found with high efficiency in gene transfer in three tumor cell lines including A549, HepG2 and H460. The optimized gene transfection efficacy of L3 was nearly 5.5 times more efficient than that of the popular commercially available gene delivery agent Lipofectamine 2000™ in human lung carcinoma cells A549. In addition, since L1 and L3 had nearly no gene transfection performance in normal cells HEK293, these cationic lipids showed tumor cell-targeting property to a certain extent. No significant cytotoxicity was found for the lipoplexes formed by L1-L3, and their cytotoxicities were similar to or slightly lower than the lipoplexes prepared from Lipofectamine 2000™.Novel cyclen-based cationic lipids for effective in vitro gene transfection were founded, and these studies here may extend the application areas of macrocyclic polyamines, especially for cyclen
CDK5 Is Essential for Soluble Amyloid β-Induced Degradation of GKAP and Remodeling of the Synaptic Actin Cytoskeleton
The early stages of Alzheimer's disease are marked by synaptic dysfunction and loss. This process results from the disassembly and degradation of synaptic components, in particular of scaffolding proteins that compose the post-synaptic density (PSD), namely PSD95, Homer and Shank. Here we investigated in rat frontal cortex dissociated culture the mechanisms involved in the downregulation of GKAP (SAPAP1), which links the PSD95 complex to the Shank complex and cytoskeletal structures within the PSD. We show that Aβ causes the rapid loss of GKAP from synapses through a pathway that critically requires cdk5 activity, and is set in motion by NMDAR activity and Ca2+ influx. We show that GKAP is a direct substrate of cdk5 and that its phosphorylation results in polyubiquitination and proteasomal degradation of GKAP and remodeling (collapse) of the synaptic actin cytoskeleton; the latter effect is abolished in neurons expressing GKAP mutants that are resistant to phosphorylation by cdk5. Given that cdk5 also regulates degradation of PSD95, these results underscore the central position of cdk5 in mediating Aβ-induced PSD disassembly and synapse loss
- …
