1,572 research outputs found
Lattice Boltzmann modeling of boiling heat transfer: The boiling curve and the effects of wettability
A hybrid thermal lattice Boltzmann (LB) model is presented to simulate thermal multiphase flows with phase change based on an improved pseudopotential LB approach (Li et al., 2013). The present model does not suffer from the spurious term caused by the forcing-term effect, which was encountered in some previous thermal LB models for liquid–vapor phase change. Using the model, the liquid–vapor boiling process is simulated. The boiling curve together with the three boiling stages (nucleate boiling, transition boiling, and film boiling) is numerically reproduced in the LB community for the first time. The numerical results show that the basic features and the fundamental characteristics of boiling heat transfer are well captured, such as the severe fluctuation of transient heat flux in the transition boiling and the feature that the maximum heat transfer coefficient lies at a lower wall superheat than that of the maximum heat flux. Furthermore, the effects of the heating surface wettability on boiling heat transfer are investigated. It is found that an increase in contact angle promotes the onset of boiling but reduces the critical heat flux, and makes the boiling process enter into the film boiling regime at a lower wall superheat, which is consistent with the findings from experimental studies
Lattice Boltzmann methods for multiphase flow and phase-change heat transfer
Over the past few decades, tremendous progress has been made in the development of particle-based discrete simulation methods versus the conventional continuum-based methods. In particular, the lattice Boltzmann (LB) method has evolved from a theoretical novelty to a ubiquitous, versatile and powerful computational methodology for both fundamental research and engineering applications. It is a kinetic-based mesoscopic approach that bridges the microscales and macroscales, which offers distinctive advantages in simulation fidelity and computational efficiency. Applications of the LB method are now found in a wide range of disciplines including physics, chemistry, materials, biomedicine and various branches of engineering. The present work provides a comprehensive review of the LB method for thermofluids and energy applications, focusing on multiphase flows, thermal flows and thermal multiphase flows with phase change. The review first covers the theoretical framework of the LB method, revealing certain inconsistencies and defects as well as common features of multiphase and thermal LB models. Recent developments in improving the thermodynamic and hydrodynamic consistency, reducing spurious currents, enhancing the numerical stability, etc., are highlighted. These efforts have put the LB method on a firmer theoretical foundation with enhanced LB models that can achieve larger liquid-gas density ratio, higher Reynolds number and flexible surface tension. Examples of applications are provided in fuel cells and batteries, droplet collision, boiling heat transfer and evaporation, and energy storage. Finally, further developments and future prospect of the LB method are outlined for thermofluids and energy applications
Diffraction problems for quasilinear parabolic systems with boundary intersecting interfaces
Stability of Unilateral Posterior Crossbite Correction in the Mixed Dentition
- an RCT-study with 3-year Follow-Up.
Aim: To compare and evaluate long-term stability of crossbite correction with Quad Helix or expansion plate in the mixed dentition.
Methods: In this RCT-study 35 patients with unilateral posterior crossbite were randomized to be treated with either Quad Helix or expansion plate. The inclusion criteria were: mixed dentition, unilateral posterior crossbite, no sucking habits or previous orthodontic treatment. Stability was evaluated after 3 years by study cast measurements. Twenty subjects with normal occlusion were included as controls. Success rate, maxillary and mandibular transverse dimensions, overjet, overbite and arch length were registered.
Results: Stability was equal for the two treatment methods. Small, albeit significant, differences between the groups were assessed with reference to transverse dimensions. No significant difference was seen for overjet and overbite. The treated patients never reached the same transversal width as the normal control group.
Conclusions: The long-term stability of posterior crossbite correction with Quad helix and expansion plate was equal. The maxillary width was greater in the control group than the treated groups
Targeting VEGFR-1 and VEGFR2-expressing non-tumor cells is essential for esophageal cancer therapy
Increasing appreciation of tumor heterogeneity and the tumor-host interaction has stimulated interest in developing novel therapies that target both tumor cells and tumor microenvironment. Bone marrow derived cells (BMDCs) constitute important components of the tumor microenvironment. In this study, we aim to investigate the significance of VEGFR1- and VEGFR2-expressing non-tumor cells, including BMDCs, in esophageal cancer (EC) progression and in VEGFR1/VEGFR2-targeted therapies. Here we report that VEGFR1 or VEGFR2 blockade can significantly attenuate VEGF-induced Src and Erk signaling, as well as the proliferation and migration of VEGFR1+ and VEGFR2+ bone marrow cells and their pro-invasive effect on cancer cells. Importantly, our in vivo data show for the first time that systemic blockade of VEGFR1+ or VEGFR2+ non-tumor cells with neutralizing antibodies is sufficient to significantly suppress esophageal tumor growth, angiogenesis and metastasis in mice. Moreover, our tissue microarray study of human EC clinical specimens showed the clinicopathological significance of VEGFR1 and VEGFR2 in EC, which suggest that anti-VEGFR1/VEGFR2 therapies may be particularly beneficial for patients with aggressive EC. In conclusion, this study demonstrates the important contributions of VEGFR1+ and VEGFR2+ non-tumor cells in esophageal cancer progression, and substantiates the validity of these receptors as therapeutic targets for this deadly disease.published_or_final_versio
Monolithic semiconductor lasers with dynamically tunable linear-to-circular polarization
The ability to control the polarization state of emission from semiconductor lasers is essential for many applications in spectroscopy, imaging, and communications, inter alia, with monolithic integration approaches being extremely beneficial. Although manipulating the output polarization of radiation from a laser can be achieved through a number of approaches, obtaining continuous dynamic control, e.g., from linear to circular, remains extremely challenging. In this paper, we demonstrate that the polarization of terahertz (THz) frequency radiation can be continuously tuned electronically from linear to circular polarization by monolithically integrating in-plane metasurfaces with two phase-locked semiconductor-based THz quantum cascade lasers. Moreover, the metasurfaces—metal antenna arrays in this case—also act as efficient beam collimators, yielding a collimated beam divergence of ∼10° × 10°. Our results, however, have broad applicability to a wide range of semiconductor lasers operating from the visible to THz regions of the electromagnetic spectrum
Search for K_S K_L in psi'' decays
K_S K_L from psi'' decays is searched for using the psi'' data collected by
BESII at BEPC, the upper limit of the branching fraction is determined to be
B(psi''--> K_S K_L) < 2.1\times 10^{-4} at 90% C. L. The measurement is
compared with the prediction of the S- and D-wave mixing model of the
charmonia, based on the measurements of the branching fractions of J/psi-->K_S
K_L and psi'-->K_S K_L.Comment: 5 pages, 1 figur
Study of psi(2S) decays to X J/psi
Using J/psi -> mu^+ mu^- decays from a sample of approximately 4 million
psi(2S) events collected with the BESI detector, the branching fractions of
psi(2S) -> eta J/psi, pi^0 pi^0 J/psi, and anything J/psi normalized to that of
psi(2S) -> pi^+ pi^- J/psi are measured. The results are B(psi(2S) -> eta
J/psi)/B(psi(2S) -> pi^+ pi^- J/psi) = 0.098 \pm 0.005 \pm 0.010, B(psi(2S) ->
pi^0 pi^0 J/psi)/B(psi(2S) -> pi^+ pi^- J/psi) = 0.570 \pm 0.009 \pm 0.026, and
B(psi(2S) -> anything J/psi)/B(psi(2S) -> pi^+ pi^- J/psi) = 1.867 \pm 0.026
\pm 0.055.Comment: 13 pages, 8 figure
First Measurements of eta_c Decaying into K^+K^-2(pi^+pi^-) and 3(pi^+pi^-)
The decays of eta_c to K^+K^-2(pi^+pi^-) and 3(pi^+pi^-) are observed for the
first time using a sample of 5.8X10^7 J/\psi events collected by the BESII
detector. The product branching fractions are determined to be B(J/\psi-->gamma
eta_c)*B(eta_c-->K^+K^-pi^+pi^-pi^+pi^-)=(1.21+-0.32+-
0.23)X10^{-4}, and (J/\psi-->gamma eta_c)*
B(eta_c-->pi^+pi^-pi^+pi^-pi^+pi^-)= (2.59+-0.32+-0.48)X10^{-4}. The upper
limit for eta_c-->phi pi^+pi^-pi^+pi^- is also obtained as B(J/\psi-->gamma
eta_c)*B(eta_c--> phi pi^+pi^-pi^+pi^-)< 6.03 X10^{-5} at the 90% confidence
level.Comment: 11 pages, 4 figure
Resonances in and
A partial wave analysis is presented of and
from a sample of 58M events in the BES II detector. The
is observed clearly in both sets of data, and parameters of the
Flatt\' e formula are determined accurately: (stat)
(syst) MeV/c, MeV/c, . The data also exhibit a strong peak
centred at MeV/c. It may be fitted with and a
dominant signal made from interfering with a smaller
component. There is evidence that the signal is
resonant, from interference with . There is also a state in with MeV/c and
MeV/c; spin 0 is preferred over spin 2. This state, , is
distinct from . The data contain a strong peak due to
. A shoulder on its upper side may be fitted by interference
between and .Comment: 17 pages, 6 figures, 1 table. Submitted to Phys. Lett.
- …