879 research outputs found
Manganese coordination chemistry of bis(imino)phenoxide derived [2 + 2] Schiff-base macrocyclic ligands
The [2 + 2] Schiff base macrocycles [2,2'-(CH₂CH₂)(C₆H₄N)₂-2,6-(4-RC₆H₃OH)]₂ (IʳH₂), upon reaction with MnCl₂ (two equivalents) afforded the bimetallic complex [Cl₃Mn(NCMe)][MnCl(IᵗᵇᵘH₂)] (2). Under similar conditions, use of the related [2 + 2] oxy-bridged macrocycle [2,2'-O(C₆H₄N=CH)₂4-RC₆H₃OH] (IIʳH₂), afforded the bimetallic complexes [(MnCl)₂IIʳ] (R = Me 3, tBu 4), whilst the macrocycle derived from 1,2-diaminobenzene and 5,5'-di-tert-butyl-2,2'-dihydroxy-3,3'-methylenedibenzaldehyde (IIIH₄) afforded the complex [(MnCl)₂(III)]·2MeCN (5·2MeCN). For comparative studies, the salt complexes [2,6-(ArNHCH)₂-4-MeC₆H₂O][MnCl₃(NCMe)] (Ar = 2,4-Me₂C₆H₃, 6) and {[2,6-(ArNHCH)₂-4-MeC₆H₂O][MnCl}₂[MnCl₄]·8CH₂Cl₂ (Ar = 4-MeC₆H₄, 7·8CH₂Cl₂) were prepared. The crystal structures of 1 - 7 are reported (synchrotron radiation was necessary for complexes 1, 3 and 5). Complexes 1 - 7 (not 5) were screened for their potential to act as pre-catalysts for the ring opening polymerization (ROP) of ε-caprolactone; 3, 4 and 6, 7 were inactive, whilst 1 and 2 exhibited only poor activity low conversion (<15 %) at temperatures above 60 °C
Spectral hardness evolution characteristics of tracking Gamma-ray Burst pulses
Employing a sample presented by Kaneko et al. (2006) and Kocevski et al.
(2003), we select 42 individual tracking pulses (here we defined tracking as
the cases in which the hardness follows the same pattern as the flux or count
rate time profile) within 36 Gamma-ray Bursts (GRBs) containing 527
time-resolved spectra and investigate the spectral hardness, (where
is the maximum of the spectrum), evolutionary
characteristics. The evolution of these pulses follow soft-to-hard-to-soft (the
phase of soft-to-hard and hard-to-soft are denoted by rise phase and decay
phase, respectively) with time. It is found that the overall characteristics of
of our selected sample are: 1) the evolution in the rise
phase always start on the high state (the values of are always
higher than 50 keV); 2) the spectra of rise phase clearly start at higher
energy (the median of are about 300 keV), whereas the spectra of
decay phase end at much lower energy (the median of are about 200
keV); 3) the spectra of rise phase are harder than that of the decay phase and
the duration of rise phase are much shorter than that of decay phase as well.
In other words, for a complete pulse the initial is higher than the
final and the duration of initial phase (rise phase) are much
shorter than the final phase (decay phase). This results are in good agreement
with the predictions of Lu et al. (2007) and current popular view on the
production of GRBs. We argue that the spectral evolution of tracking pulses may
be relate to both of kinematic and dynamic process even if we currently can not
provide further evidences to distinguish which one is dominant. Moreover, our
statistical results give some witnesses to constrain the current GRB model.Comment: 32 pages, 26 figures, 3 tables, accepted for publication in New
Astronom
Intra-articular spine injections of steroid as a contributing factor to glaucoma
Letter to the editorQueena Qin, Robert J. Casson, Daniel Myers, Sudha Cugat
Hollow to bamboolike internal structure transition observed in carbon nanotube films
The transition of the internal structure in microwave chemical-vapor- deposited carbon nanotubes is investigated using scanning electron microscopy and high-resolution transmission electron microscopy. By controlling the thickness of the iron catalyst layer, a sequence of carbon nanotube films was obtained with diameters ranging from a few nanometers to over 100 nm. Experiments have established that by continuous reduction of the Fe layer thickness to <1 nm, single- and double-wall carbon nanotube films can be produced, whereas for an Fe film thickness <1 nm, multiwall carbon nanotube films can be synthesized. It was also found that for an Fe thickness ≥5 nm, interlayers (i.e., bamboolike or periodically compartmentalized nanotubes) were formed, while for an iron thickness <2 nm the tubes were primarily hollow. For an intermediate Fe thickness the internal structure of the carbon nanotubes was a mixture of hollow and bamboolike. A growth model which considers bulk and surface diffusions of carbon into andor onto the Fe catalyst surface is proposed to describe this transition and the internal periodic structure
STM characterization of the Si-P heterodimer
We use scanning tunneling microscopy (STM) and Auger electron spectroscopy to
study the behavior of adsorbed phosphine (PH) on Si(001), as a function
of annealing temperature, paying particular attention to the formation of the
Si-P heterodimer. Dosing the Si(001) surface with 0.002 Langmuirs of
PH results in the adsorption of PH (x=2,3) onto the surface and
some etching of Si to form individual Si ad-dimers. Annealing to 350C
results in the incorporation of P into the surface layer to form Si-P
heterodimers and the formation of short 1-dimensional Si dimer chains and
monohydrides. In filled state STM images, isolated Si-P heterodimers appear as
zig-zag features on the surface due to the static dimer buckling induced by the
heterodimer. In the presence of a moderate coverage of monohydrides this static
buckling is lifted, rending the Si-P heterodimers invisible in filled state
images. However, we find that we can image the heterodimer at all H coverages
using empty state imaging. The ability to identify single P atoms incorporated
into Si(001) will be invaluable in the development of nanoscale electronic
devices based on controlled atomic-scale doping of Si.Comment: 6 pages, 4 figures (only 72dpi
Spin- and charge-density oscillations in spin chains and quantum wires
We analyze the spin- and charge-density oscillations near impurities in spin
chains and quantum wires. These so-called Friedel oscillations give detailed
information about the impurity and also about the interactions in the system.
The temperature dependence of these oscillations explicitly shows the
renormalization of backscattering and conductivity, which we analyze for a
number of different impurity models. We are also able to analyze screening
effects in one dimension. The relation to the Kondo effect and experimental
consequences are discussed.Comment: Final published version. 15 pages in revtex format including 22
epsf-embedded figures. The latest version in PDF format is available from
http://fy.chalmers.se/~eggert/papers/density-osc.pd
A class of ansatz wave functions for 1D spin systems and their relation to DMRG
We investigate the density matrix renormalization group (DMRG) discovered by
White and show that in the case where the renormalization eventually converges
to a fixed point the DMRG ground state can be simply written as a ``matrix
product'' form. This ground state can also be rederived through a simple
variational ansatz making no reference to the DMRG construction. We also show
how to construct the ``matrix product'' states and how to calculate their
properties, including the excitation spectrum. This paper provides details of
many results announced in an earlier letter.Comment: RevTeX, 49 pages including 4 figures (macro included). Uuencoded with
uufiles. A complete postscript file is available at
http://fy.chalmers.se/~tfksr/prb.dmrg.p
Sequential Decay Distortion of Goldhaber Model Widths for Spectator Fragments
Momentum widths of the primary fragments and observed final fragments have
been investigated within the framework of an Antisymmetrized Molecular Dynamics
transport model code (AMD-V) with a sequential decay afterburner (GEMINI). It
is found that the secondary evaporation effects cause the values of a reduced
momentum width, , derived from momentum widths of the final fragments
to be significantly less than those appropriate to the primary fragment but
close to those observed in many experiments. Therefore, a new interpretation
for experiemental momentum widths of projectile-like fragments is presented.Comment: 4 pages, 3 figs. Accepted for publication in Phys. Rev. C as a Rapid
Communicatio
Sequential Decay Distortion of Goldhaber Model Widths for Spectator Fragments
Momentum widths of the primary fragments and observed final fragments have
been investigated within the framework of an Antisymmetrized Molecular Dynamics
transport model code (AMD-V) with a sequential decay afterburner (GEMINI). It
is found that the secondary evaporation effects cause the values of a reduced
momentum width, , derived from momentum widths of the final fragments
to be significantly less than those appropriate to the primary fragment but
close to those observed in many experiments. Therefore, a new interpretation
for experiemental momentum widths of projectile-like fragments is presented.Comment: 4 pages, 3 figs. Accepted for publication in Phys. Rev. C as a Rapid
Communicatio
Split-off dimer defects on the Si(001)2x1 surface
Dimer vacancy (DV) defect complexes in the Si(001)2x1 surface were
investigated using high-resolution scanning tunneling microscopy and first
principles calculations. We find that under low bias filled-state tunneling
conditions, isolated 'split-off' dimers in these defect complexes are imaged as
pairs of protrusions while the surrounding Si surface dimers appear as the
usual 'bean-shaped' protrusions. We attribute this to the formation of pi-bonds
between the two atoms of the split-off dimer and second layer atoms, and
present charge density plots to support this assignment. We observe a local
brightness enhancement due to strain for different DV complexes and provide the
first experimental confirmation of an earlier prediction that the 1+2-DV
induces less surface strain than other DV complexes. Finally, we present a
previously unreported triangular shaped split-off dimer defect complex that
exists at SB-type step edges, and propose a structure for this defect involving
a bound Si monomer.Comment: 8 pages, 7 figures, submitted to Phys. Rev.
- …