811 research outputs found
Slow cooling and efficient extraction of C-exciton hot carriers in MoS2 monolayer
In emerging optoelectronic applications, such as water photolysis, exciton fission and novel photovoltaics involving low-dimensional nanomaterials, hot-carrier relaxation and extraction mechanisms play an indispensable and intriguing role in their photo-electron conversion processes. Two-dimensional transition metal dichalcogenides have attracted much attention in above fields recently; however, insight into the relaxation mechanism of hot electron-hole pairs in the band nesting region denoted as C-excitons, remains elusive. Using MoS2 monolayers as a model two-dimensional transition metal dichalcogenide system, here we report a slower hot-carrier cooling for C-excitons, in comparison with band-edge excitons. We deduce that this effect arises from the favourable band alignment and transient excited-state Coulomb environment, rather than solely on quantum confinement in two-dimension systems. We identify the screening-sensitive bandgap renormalization for MoS2 monolayer/graphene heterostructures, and confirm the initial hot-carrier extraction for the C-exciton state with an unprecedented efficiency of 80%, accompanied by a twofold reduction in the exciton binding energy
Recommended from our members
Scalability of supernova remnant simulations
The simulation or solution of the supernova remnant evolution may be scaled from one interstellar environment to another. We systematically examine this scalability, the use of which is so far still very limited in astrophysical literature. We show how the scalability is affected by various constraints imposed by physical processes and initial conditions, and demonstrate the use of the scaling as a powerful tool to explore the interdependence among relevant parameters, based on a minimum set of simulations. In particular, we devise a scaling scheme that can be used to adaptively generate numerous seed remnants and plant them into 3D hydrodynamic simulations of the supernova-dominated interstellar medium
Pleosporales
One hundred and five generic types of Pleosporales are described and illustrated. A brief introduction and detailed history with short notes on morphology, molecular phylogeny as well as a general conclusion of each genus are provided. For those genera where the type or a representative specimen is unavailable, a brief note is given. Altogether 174 genera of Pleosporales are treated. Phaeotrichaceae as well as Kriegeriella, Zeuctomorpha and Muroia are excluded from Pleosporales. Based on the multigene phylogenetic analysis, the suborder Massarineae is emended to accommodate five families, viz. Lentitheciaceae, Massarinaceae, Montagnulaceae, Morosphaeriaceae and Trematosphaeriaceae
Energy-efficient precoding in multicell networks with full-duplex base stations
© 2017, The Author(s). This paper considers multi-input multi-output (MIMO) multicell networks, where the base stations (BSs) are full-duplex transceivers, while uplink and downlink users are equipped with multiple antennas and operate in a half-duplex mode. The problem of interest is to design linear precoders for BSs and users to optimize the network’s energy efficiency. Given that the energy efficiency objective is not a ratio of concave and convex functions, the commonly used Dinkelbach-type algorithms are not applicable. We develop a low-complexity path-following algorithm that only invokes one simple convex quadratic program at each iteration, which converges at least to the local optimum. Numerical results demonstrate the performance advantage of our proposed algorithm in terms of energy efficiency
Strain uniformity footprint on mechanical performance and erosion-corrosion behavior of equal channel angular pressed pure titanium
In this paper, the effect of equal channel angular pressing (ECAP) on microstructure, mechanical, and erosion-corrosion behavior of commercial pure (CP) titanium was investigated through experimental work. Four passes of ECAP processing at 400 ℃ was performed on CP titanium. The results showed that the homogeneous structure and coarse equiaxed grains of the initial annealed sample are transformed into the combination of UFG and NS with an average size of 750 nm and 85 nm, respectively. Also, ECAP pass numbers increase the fraction of high angle grain boundaries which improves the ductility of the processed sample. The highest hardness and strength improvement rate was observed after the first pass. Furthermore, the increasing rate of hardness and strength is gradually decreased at the subsequent passes and reached the steady-state level at the 4th pass. This is due to the balance between hardening by dislocations and twinnings accumulation and softening by recovery mechanisms. As a result, a uniform hardness distribution on both the cross-sectional and longitudinal planes is achieved. It was confirmed that erosion-corrosion resistance of the processed sample is enhanced due to the grain refinement, material homogeneity, and quick formation of a strong oxide bond layer on the surface
NGC 5775: Anatomy of a disk-halo interface
We present the first high-resolution study of the disk-halo interface in an edge-on galaxy (NGC 5775) in which every component of the interstellar medium is represented and resolved (though not all to the same resolution). New single-dish CO J=2-1 and CO J=1-0 data, ROSAT X-ray data, and HIRES IRAS data are presented along with HI data which emphasizes the high latitude features. In conjunction with previously published radio continuum (6 and 20 cm) and H data, we find spatial correlations between various ISM components in that all components of the ISM are present in the disk-halo features (except for CO for which there is insufficient spatial coverage). The HI features extend to ~7 kpc above the plane, form loops in position-position space, in one case, form a loop in position-velocity space, and are also observed over a large velocity range. This implies that the disk-halo features represent expanding supershells. However, the shells may be incomplete and partially open-topped, suggesting that we are observing the breakup of the supershells as they traverse the disk-halo interface. There is some evidence for acceleration with z and both redshifted and blueshifted velocities are present, although the gas which is lagging with respect to galactic rotation dominates. The radio continuum spectral index is flatter around the shell rims and we show that this cannot be due to a contribution from thermal gas but rather is due to intrinsic flattening of the non-thermal spectral index, suggesting that shocks may be important in these regions. The H emission is located interior to the HI. For feature F3, the H emission forms the interior skin of the HI shell, yet there appears to be a minimum of in-disk star formation immediately below the feature. We present a picture of a typical HI supershell which accelerates and breaks up through the disk-halo interface. Such a feature is likely internally generated via an energetic event in the disk
An overview of the recent developments on fructooligosaccharide production and applications
Over the past years, many researchers have suggested
that deficiencies in the diet can lead to disease states
and that some diseases can be avoided through an adequate
intake of relevant dietary components. Recently, a great interest
in dietary modulation of the human gut has been registered.
Prebiotics, such as fructooligosaccharides (FOS), play a key
role in the improvement of gut microbiota balance and in
individual health. FOS are generally used as components of
functional foods, are generally regarded as safe (generally
recognized as safe status—from the Food and Drug Administration,
USA), and worth about 150€ per kilogram. Due to
their nutrition- and health-relevant properties, such as moderate
sweetness, low carcinogenicity, low calorimetric value,
and low glycemic index, FOS have been increasingly used
by the food industry. Conventionally, FOS are produced
through a two-stage process that requires an enzyme production
and purification step in order to proceed with the chemical
reaction itself. Several studies have been conducted on the
production of FOS, aiming its optimization toward the development
of more efficient production processes and their potential
as food ingredients. The improvement of FOS yield and
productivity can be achieved by the use of different fermentative
methods and different microbial sources of FOS producing
enzymes and the optimization of nutritional and
culture parameter; therefore, this review focuses on the latest
progresses in FOS research such as its production, functional
properties, and market data.Agencia de Inovacao (AdI)-Project BIOLIFE reference PRIME 03/347. Ana Dominguez acknowledges Fundacao para a Ciencia e a Tecnologia, Portugal, for her PhD grant reference SFRH/BD/23083/2005
A systematic Chandra study of Sgr A*: II. X-ray flare statistics
The routinely flaring events from Sgr A* trace dynamic, high-energy processes in the immediate vicinity of the supermassive black hole. We statistically study temporal and spectral properties, as well as fluence and duration distributions, of the flares detected by the Chandra X-ray Observatory from 1999 to 2012. The detection incompleteness and bias are carefully accounted for in determining these distributions. We find that the fluence distribution can be well characterized by a power law with a slope of 1.73-0.19+0.20, while the durations (tau; in seconds) by a lognormal function with a mean log(τ) = 3.39-0.24+0.27and an intrinsic dispersion σ = 0.28-0.06+0.08.No significant correlation between the fluence and duration is detected. The apparent positive correlation, as reported previously, is mainly due to the detection bias (i.e. weak flares can be detected only when their durations are short). These results indicate that the simple self-organized criticality model has difficulties in explaining these flares. We further find that bright flares usually have asymmetric light curves with no statistically evident difference/preference between the rising and decaying phases in terms of their spectral/timing properties. Our spectral analysis shows that although a power-law model with a photon index of 2.0 ± 0.4 gives a satisfactory fit to the joint spectra of strong and weak flares, there is weak evidence for a softer spectrum of weaker flares. This work demonstrates the potential to use statistical properties of X-ray flares to probe their trigger and emission mechanisms, as well as the radiation propagation around the black hole
Review: The increasing importance of carbon nanotubes and nanostructured conducting polymers in biosensors
The growing need for analytical devices requiring smaller sample volumes, decreased power consumption and improved performance have been driving forces behind the rapid growth in nanomaterials research. Due to their dimensions, nanostructured materials display unique properties not traditionally observed in bulk materials. Characteristics such as increased surface area along with enhanced electrical/optical properties make them suitable for numerous applications such as nanoelectronics, photovoltaics and chemical/biological sensing. In this review we examine the potential that exists to use nanostructured materials for biosensor devices. By incorporating nanomaterials, it is possible to achieve enhanced sensitivity, improved response time and smaller size. Here we report some of the success that has been achieved in this area. Many nanoparticle and nanofibre geometries are particularly relevant, but in this paper we specifically focus on organic nanostructures, reviewing conducting polymer nanostructures and carbon nanotubes
- …
