7 research outputs found

    An extensible product structure model for product lifecycle management in the make-to-order environment

    Get PDF
    This paper presents a product structure model with a semantic representation technique that make the product structure extensible for developing product lifecycle management (PLM) systems that is flexible for make-to-order environment. In the make-to-order business context, each product could have a number of variants with slightly different constitutions to fulfill different customer requirements. All the variants of a family have common characteristics and each variant has its specific features. A master-variant pattern is proposed for building the product structure model to explicitly represent common characteristics and specific features of individual variants. The model is capable of enforcing the consistency of a family structure and its variant structure, supporting multiple product views, and facilitating the business processes. A semantic representation technique is developed that enables entity attributes to be defined and entities to be categorized in a neutral and semantic format. As a result, entity attributes and entity categorization can be redefined easily with its configurable capability for different requirements of the PLM systems. An XML-based language is developed for semantically representing entities and entity categories. A prototype as a proof-of-concept system is presented to illustrate the capability of the proposed extensible product structure model

    Erratum: A unified product structure management for enterprise business process integration throughout the product lifecycle (International Journal of Production Research (2006) 44:9 (1757-1776))

    No full text
    10.1080/00207540600807859International Journal of Production Research44153159-IJPR

    Lipschitz Unimodal and Isotonic Regression on Paths and Trees

    No full text
    We describe algorithms for finding the regression of t, a sequence of values, to the closest sequence s by mean squared error, so that s is always increasing (isotonicity) and so the values of two consecutive points do not increase by too much (Lipschitz). The isotonicity constraint can be replaced with a unimodular constraint, where there is exactly one local maximum in s. These algorithm are generalized from sequences of values to trees of values. For each scenario we describe near-linear time algorithms.

    Progress and prospects of integrated physical geography in China

    No full text
    corecore