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Abstract 

This paper presents a product structure model with a semantic representation technique that make the product 

structure extensible for developing product lifecycle management (PLM) systems that is flexible for 

make-to-order environment.  In the make-to-order business context, each product could have a number of 

variants with slightly different constitutions to fulfill different customer requirements. All the variants of a 

family have common characteristics and each variant has its specific features. A master-variant pattern is 

proposed for building the product structure model to explicitly represent common characteristics and specific 

features of individual variants. The model is capable of enforcing the consistency of a family structure and its 

variant structure, supporting multiple product views, and facilitating the business processes. A semantic 

representation technique is developed that enables entity attributes to be defined and entities to be categorized in 

a neutral and semantic format.  As a result, entity attributes and entity categorization can be redefined easily 

with its configurable capability for different requirements of the PLM systems. An XML-based language is 

developed for semantically representing entities and entity categories. A prototype as a proof-of-concept system 

is presented to illustrate the capability of the proposed extensible product structure model. 
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1 Introduction 

Product structure, which is a hierarchical tree representing the classification of components 

that compose a product and the interrelationships of the components, is key information widely 

used by various business activities performed at different stages [1-3]. PLM is a strategic 

business principle to make product information consistent and sharable throughout an entire 

product lifecycle, and associate other relevant information created at each stage with product 

structures to serve the needs of downstream stages [4].  

To provide customers with tailor-made products faster, better and cheaper, manufacturers 

have shifted their production mode to mass customization to take advantage of mass 

production for small batch-size production [5]. For such an environment, a product initially 

consists of a common base and modularized functional subsystems to form a customization 

platform [6]. Accordingly, essentially needed is a product structure model capable of flexibly 

representing product families and product variants with attention to different business 

processes in a product lifecycle. A good product structure model should be able to synchronize 

a family structure and its variant structures. At present, research generally attends to structure 

and represent detailed data related to a single product, and many product structure models are 

specifically developed for the different products. Product structure models considering product 

family and capable of supporting PLM rarely exists [7].  

In implementation of PLM systems, much customization work is needed to tailor a system 

for a particular enterprise through redesign and redevelopment. Customization is necessary 

mainly because entities and entities attributes of the same entity to be managed vary from one 



 3

company to another due to the different business strategies. In PLM, different functional 

departments may have different needs to product representation. Ideally, a product structure 

model should be developed by taking into consideration all the requirements of different 

business processes. However, it is almost impossible [7]. Furthermore, due to the need to 

change their business strategies, new requirements might be required. A good approach to 

fulfill the need of frequently changing requirements is to develop a PLM system that enables 

enterprises to reconfigure the system when needed. The flexibility of a PLM system relies 

heavily on extensibility of a product structure model underpinning the system. The focus of this 

research is on the modeling of PLM system for a make-to-order environment. The extensible 

product structure model presented in this paper is one of key outcomes of the research. 

2 Related research review 

One essential function of PDM systems is to manage product structure [3]. However, few 

available PDM systems are powerful to manage product structures for mass customization 

because of the limitations of product structure models at representation of product families [8]. 

In addition, most product structure models underlying PDM systems lack of the ability to 

support integration of other business processes, such as planning and production [9, 10]. 

A few reports can be found on product structure models for representing product families. 

Sudarsan [11] presented a Product Family Evolution Model (PFEM) to address product family 

representation for the product information modeling framework. However, PFEM pays little 

attention to representation of common characteristics of a family and particular characteristics 

of a variant. Du [12] reported a product structure model to represent product family in the mass 
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customization context with functional view, technical view and structural view. This model is 

helpful for companies to shift from the individual product development to family-based design 

by providing a systematic method to establish a building block repository and configuration 

rules. It lacks of the ability to support design process management. Fujita [13] proposed a 

product structure representation by decomposing a product into different subsystems. The 

model only puts its focus on maximizing product varieties using minimum building blocks to 

achieve optimized a customization platform. Janitza [8] also reported a product model for mass 

customization by incorporating product decomposition and part specification into one model. 

This model provides a highly flexible product model specification for the product designer and 

simpler configuration for the customer. The family representation and variant representation 

has not received enough attention and synchronization of two representations is not addressed.  

Based on the literature review, some of main research gaps in product structure modeling 

were identified, including 1) explicit representations of common characteristics of product 

family and specific features of product variants; 2) synchronization of a family model and its 

variant models in the context of mass customization; 3) integration of production structure and 

other business object models; and 4) extensibility of product structure models for flexible PLM 

systems. The product structure model reported in this paper attempts to fill these gaps to 

support development of a flexible PLM system for entire product lifecycle. 

3 Abstract Product Structure Model 

3.1 Master-variant pattern 

To enable the model to effectively represent the common features of a family and special 
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features of different variants, a master-variant pattern, as shown in Fig. 1, is proposed for 

establishing the product structure model. In the model, the interfaces IMaster and IVariant are 

modeled to represent common properties and behaviors of families and variants respectively. 

The interface IMVLink represents common properties and behaviors of associations between 

masters and variants. The cardinalities of the association between IMaster and IVariant imply 

that one master can have one or unlimited variants and a variant should have and only can have 

one master. A master cannot exist without a variant, and vice versa. In this pattern, attributes 

common to all variants should be defined in master classes. Attributes specific to variants 

should be modeled in variant classes. In this pattern, IMaster is an abstract for grouping 

variants and represents common characteristics of a family while IVariant represents the 

special characteristics of individual variants. 

In the model, the attributes id and name are defined to uniquely identify individual families. 

The attribute version is used to differentiate variants in a family. The model implies that all 

variants can share the same id and name and each variant can have a special name by defining 

the attribute variantName in the class Variant.  

The master-variant pattern offers three main advantages: 1) it provides a clear boundary 

between the family representation and the variant representation. At the same time, it offers the 

capability of maintaining the data integrity; 2) it is capable of representing common 

characteristics of families and specific characteristics of individual variants; and 3) it can 

flexibly meet different requirements of different business processes. Masters or variants can be 

explicitly used as inputs to a business process and associated information can be explicitly 

linked to masters or variants.  
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3.2 Product structure model 

Based on the master-variant pattern, the product structure model shown in Fig. 2 is 

developed. In the model, product, part and subassembly are represented by three groups of 

classes respectively: Product, ProductVariant and ProductMVLink, Part, PartVariant and 

PartMVLink as well as Subassembly, SubassemblyVariant and SubassemblyMVLink. The 

classes Product, Part and Subassembly represents product families, part families and 

subassembly families respectively while the classes ProductVariant, PartVariant and 

SubassemblyVariant represent product variants, part variants and subassembly variants. 

3.2.1 Family Structure 

For clarity of presentation, the family structure model in Fig. 2 is presented specifically in 

Fig. 3. In the model, aggregation associations between Product and Part, Subassembly as well 

as StandardPart implies that a product can consist of non-standard parts, subassemblies and 

standard parts. Part and Subassembly are master classes that represents a family rather than a 

specific product. Hence, the model shown in Fig. 3 only reflects what part families, 

subassembly families and standard parts are involved in a product family. It does not provide 

information about which variant of a part family or a subassembly family is involved in a 

product variant. However, based on the master-variant link, all part variants and subassembly 

variants are clearly reflected. Therefore, the family model provides an overall view of a 

product family about product variants and all optional part variants and subassembly variants. 

Such a overview is called product family spectrum [10]. 

Fig. 4 shows the example of the spectrum view of a simplified car family based on the 

proposed model. A car family, represented by Car:Product, can consist of an audio subsystem, 
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represented by Audio:Subassembly, and an engine, represented by Engine:Part. Further, an 

audio subassembly consists of a radio subsystem, represented by Radio:StandardPart, and a 

media player, represented by MediaPlayer:Subassembly. From the spectrum, it can clearly see 

that three types of engines with different rated powers and three types of audio subsystems, 

which are cassette player, CD player and video player, are available for selection. 

The spectrum can effectively assist designers to configure products for customers, amend 

design to reorganize existing functions into configurable subsystems, design new alternative 

subsystems, or develop new functional subsystems to enhance customizability of a family. It 

can also help customers to configure products during the preparation of orders. 

3.2.2 Variant Structure 

A variant structure should clearly reflect what part variants and subassembly variants are 

used. At the same time, the model should be capable of enforcing the consistency of the family 

structure and variant structures. To achieve this goal, the variant structure model is built on the 

top of the family structure model. As shown in Fig. 2, FPPLink and FPSLink respectively 

represent associations of a product family with a part family and a subassembly family, and 

FSSLink represents association of a subassembly family with other subassembly families. To 

further represent variant structures, three association classes, i.e. PPVersionLink, 

PSVersionLink and SSVersionLink, are defined to associate FPPLink with PartVaraint, 

FPSLink with SubassemblyVariant and FSSLink with SubassemblyVariant. PPVersionLink, 

PSVersionLink and SSVersionLink are called version links and its key attribute is version. The 

value of this attribute indicates which product variant or subassembly variant that the 

associated variant is used for.  
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To explain the variant structure model, the relationships between a car variant and engine 

variants are taken as an example. As shown in Fig. 5, the car family has three variants, i.e. CarA, 

CarB and CarC, and the engine family also has three variants, which are Engine1.8, Engine2.0 

and Engine2.2. Car and Engine are associated through CarEngineLink, an instance of FPPLink. 

FPPLink is incapable of providing information about which engine variant is used for CarA, 

CarB and CarC respectively. To reflect the associations between the engine variants and the car 

variants, three version link instances are introduced, i.e. EngineVersionLink1, 

EngineVersionLink2 and EngineVersionLink3 to associate Engine1.8, Engine2.0 and Engine2.2 

with CarEngineLink respectively. The attribute version in the version link classes plays the role 

of specifying which car variant each associated engine variant is used. From Fig. 5, it is clear 

that Engine1.8 is used for CarA as the value of the attribute version of EngineVersionLink1 is 

CAR.A, which should be the same as that of the attribute version of CarA. 

Compared to the variant structure model, a significant advantage of this model is that the 

family structure model and the variant structure model are integrated. As a result, product 

variant structures can be well controlled by the corresponding product family structure. For 

example, if the engine family in Fig. 4 was not associated with the car family, CarEngineLink 

would not exist. Consequently, no engine variants could be associated with any product 

variants. This feature is very significant to companies which manage multiple families and 

there exist multiple subsystems that provide same functions, but are not exchangeable 

crossover families. For instance, two engine families are maintained for two car families 

respectively without exchangeability. While configuring products, this model can effectively 

prevent from selecting incompatible variants based on the family structure.  
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4 Lifecycle Management Support 

4.1 Product view model 

Users with different disciplines usually look into products from different prospective. For 

example, purchasing staff are only interested in the components which are to be purchased 

from suppliers. A production manager may only concern the components which are to be made 

or assembled internally. In product lifecycle management, a product should be represented in 

different ways to fulfill different needs in addition to product structure. These representations 

should be consistent with product structure, which completely reflects product constitution and 

relationships of constitutional components from the prospective of functions and structures 

[14]. Hence, the proposed product structure model is extended to support product views. A 

product view is a hierarchical representation to associate some of components of a production 

in different ways to fulfill needs of a specific stage in a product lifecycle. In product view 

management, an essential requirement is that a product should be independent of its product 

structure. However, it should be easily synchronized with product structure. As shown in Fig. 6, 

a reference mechanism is adopted to realize product views. A product view, represented by the 

class ProductView, consists of a set of instances of PartRef and/or SubassemblyRef organized 

in a hierarchical structure. As they are constructed using part references and subassembly 

references, product views are independent of a product structure. However, the reference 

mechanism enables product views to be linked back to product structure. Synchronization 

between product views and the corresponding product structure can be achieved. A reference is 

a pointer which does not contain the actual data of a part or a subassembly. Therefore, no 

duplications of data exist and data consistency can be easily maintained. A product can have 



 10

multiple views, such as manufacturing view, bill of material view and engineering change view. 

Categorization of product views is realized based on view roles, represented by the link class 

ViewRole. The ability to support product views enables the model to better support PLM. 

4.2 Integration with other processes 

The proposed product structure model differentiates standard parts and non-standard parts. 

Standard parts are purchased from suppliers. Non-standard parts may go through other 

business processes, such as production process or outsourcing process.  

The interfaces IStockable, IPurchasable and IOutsourcable in Fig.2 are modeled to enforce 

the implementing classes to comply with the processing rules of stock management, purchase 

management and outsourcing management. The implementation of IStockable by variant 

classes, i.e. ProductVariant, PartVariant and SubassemblyVariant, implies that common parts, 

subassemblies and even products are allowed to be made to stock. Further, it enables 

make-to-order and make-to-stock decision to be made at a variant level. As a result, in a part or 

subassembly family, variants commonly demanded can be made to stock while variants only 

demanded by a few of customers may be particularly made when being ordered. The model is 

able to support the main objective of mass customization by taking advantage of volume 

production and also able to deliver tailored products for customers.  

5 Extensibility and Semantic Representation 

5.1 Concept of semantic representation 

The product structure model discussed above is rather abstract. To make it useful for PLM 

systems, the model needs to be extended according to industrial sectors. The object-oriented 
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approach to derive a specific model based on an abstract model is called generalization, which 

is a process to define subclasses by extending abstract classes to represent specific types. For 

example, the subclasses Shaft and Gear may be defined by extending the abstract class Part to 

represent shafts and gears. However, companies in different industrial sectors have different 

types of products, parts and subassemblies. Even companies in the same industrial sector may 

categorize these items in different ways due to the difference of business practices. The 

identification of subclasses and essential attributes of each subclass might be difficult at the 

stage of creating a specific product structure model. In addition, specific models are usually 

established at the design stage of system development and are built into a PLM system. In such 

a way, any changes to a model will cause redeveloping the system. Such a PLM system also 

lacks of the flexibility to support changes of business strategies. 

It is imperative to develop extensible product structure model for developing flexible PLM 

systems that can be easily specialized for a particular company with minimized redesign and 

redevelopment. Essentially, an extensible product structure model should be represented in a 

semantic approach and loosely coupled with system codes. In such a system, a semantic 

product structure model serves as an instructor who guides and controls execution of system 

codes. In turn, system codes act as executives to carry out information processing by 

interpreting instructions in a semantic product structure model. When the models are changed 

or replaced, the codes can manipulate information according to new models. Therefore, PLM 

systems based on a semantic product structure model is highly flexible and reconfigurable and 

they can be easily deployed to different companies, even in different industrial sectors.  
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5.2 Semantic representation framework 

Semantic representation for the developed product structure model is shown in Fig. 7. A set 

of attribute definition is aggregated to define the entities of products, parts or subassemblies. 

An attribute definition has a AttributeSpecification associated, which defines attribute name, 

type and title. An attribute can be further characterized by providing a default value, value 

sources, value validation rules and other constraints. A value source contains information for 

determining value candidates of an attribute. A value validation defines rules as an expression 

for verifying and validating a value to be assigned to an attribute. The model separates the 

default value configuration and descriptive title configuration from the attribute declaration. 

This enables users with different knowledge work together to compose semantic models. In 

system implementation, people who have detailed knowledge of the system can work on 

attribute declarations while users with general knowledge can define default values and titles. 

The model provides a text resource configuration for defining texts in key-value pairs. Text 

entries in the text resource configuration are referred by other configurations using keys. 

5.3 XML-based representation language 

Fig. 8 shows a simplified XML-based product entity model. The tag entity is used to declare 

an information entity. The tag attribute, which is nested to the tag entity, is introduced to 

declare entity attributes. Attribute name, data type and display title are compulsory information 

in the definition of attributes. Data type and display title are defined by the nested tags type and 

title. The tag extended is employed to indicate an attribute is extended if the tag value is “true”, 

or a built-in one if the tag value is “false”. The tag attribute can have a nested tag deprecated.  

Value constraints can be defined for individual attributes and need to be defined in 
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accordance with data types. For example, legal constraints for the text type include: 1) 

maximum length of a value; 2) only upper cases or lower cases are accepted; and 3) whether 

spaces are permitted. Complicated validation conditions can be defined in value validation. A 

validation condition is an expression represents a validating logic. Three types of value sources 

are supported. The constant value source defines a set of constants as the candidate values of an 

attribute. The query value source provides information for construct SQL statements to query 

objects as candidate values. The navigation value source provides information for acquiring 

objects associated with the current object as the candidate values of an attribute.  

5.4 Semantic category representation 

The approach of creating different subclasses to represent different types of products, parts 

and subassemblies results in a rigid specific model. Therefore, this paper develops a semantic 

category representation for flexible categorization. As shown in Fig. 9, the semantic category 

representation represents categorization in a hierarchical format. The tag category defines a 

category using three parameters: key, title and schema. The attribute schema contains a 

keyword pointing to a group of attribute definitions associated with the category. A collective 

category, such as gear, can have sub-categories, such as cylindrical gear and conical gear, 

which are represented as nested elements of the collective category. The attributes defined for a 

collective group will be inherited by all its sub-categories. Apart from attributes defined in the 

class PartVariant, instances of CylindricalGear and ConicalGear also have attribute 

teethNumber which is defined for the category gear. At the same time, CylindricalGear and 

ConicalGear instances have specific attributes respectively to characterize cylindrical gears 

and conical gears. This approach does not require identifying all subclasses at a design stage as 
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categories and category-related attributes can be defined even after system development. 

6 Prototype 

A prototype system with functions for project management, product configuration 

management and inventory management has been developed based on the proposed product 

structure model and semantic representations. Fig. 10 shows the multi-tier and web-based 

architecture of the system. The kernel in the architecture is the system services, which are 

organized into three layers: foundation layer, functional layer and domain layer.  

On the foundation layer, the entity service is responsible for managing information entities 

by taking into consideration semantically defined attributes and category-related attributes. 

While creating instances of product and entities, the service checks the semantic definitions 

and consolidates both entity-related and category-related semantic attributes defined. The 

relationship service provides functions for managing entity relationships. This service also 

ensures that a master at least has one variant associated and no variant can exist without a 

master. The persistence service acts as a gateway of database access. It maps information 

entities to corresponding tables while storing information entities and instantiates appropriate 

objects while retrieving information from database. These three services work together to make 

transparent the master-variant concept and semantic representations to other services. 

The functional layer offers common functions, such as document management to support 

the domain layer. The document service is responsible for associating various documents, such 

as engineering drawings, with products and parts. Its main responsibility is to wrap documents 

as binary objects and associate the document with an object – a document owner by leveraging 
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the relationship service. The report service provides a template-based method to generate 

various reports for information exchange and sharing. By cooperating with the document 

service, reports can be associated with other objects, such as projects, products or parts.  

The domain services are developed to provide functions to integrate and manage business 

processes. Functions for project management include project initialization, project schedule 

and progress tracking. In the make-to-order environment, there are internal projects and 

external projects. Internal projects are initialized to manage family design and plan the 

production of common parts, subassembly and functional subsystems. External projects are 

created based on customer orders to fulfill customer requirements by cooperating with the 

inventory service and the resource service. In general, internal projects are managed based on 

family structures while external projects work on variant structures. The product service 

provides the capability to manage product family structures, variant structures, part families, 

subassembly families and a standard part library to assist product configuration, process 

planning and workshop task generation. Fig. 12 shows the interface of a family structure view 

with two families, i.e. a car family and a truck family. The inventory service manages stocks of 

common parts and commonly demanded variants. The resource service manages capacities and 

capabilities of resources, such as machines, materials, and operators to support design task 

management, process planning and workshop task management. 

7 Conclusion 

PLM systems are complex and the implementation is costly and time-consuming with 

potential failures. Our research focuses on the modeling and designing a PLM system which 
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can be easily configured with minimum redesign and redevelopment for different companies 

and reconfigured for new business opportunities even after the system is developed. This paper 

presents the key outcome of the research, an extensible product structure model, which is 

critical to PLM systems with flexibility for the make-to-order environment.  

In this paper, a master-variant pattern is developed to establish such a product structure 

model to represents common characteristics of a product family and particular characteristics 

of a product variant. This model is capable of maintaining a clear boundary between product 

family structures and variant structures as well as consistency of a family structure and its 

variant structures. The model is also able to support integration with other business processes. 

To make the product structure model extensible, a semantic representation technique has 

proposed to represent entity definition and entity categorization. The semantic categorization 

representation enables to flexible define categories and a set of attributes can be defined 

semantically and associated with each category. This technique enables to extend the abstract 

product structure model to a specific model for developing PLM systems with flexibility.  

A prototype system for proof-of-concept is developed to demonstrate the proposed 

extensible product structure model and the semantic representation techniques to support 

product configuration.  In particular, this prototype with multi-tier and web-based architecture 

is developed to show the capabilities of the proposed modelfor the flexibility of a PLM system. 
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Fig.3 Product family model 
Family Structure

handle : long = 0001
id : String = CAR-M-001
name : String = General car

Car : Product
Audio Family

handle : long = 0011
version : String = AUIDO.CD
variantName : String = CD based audio

CDAudio : SubassemblyVariant

handle : long = 0010
version : String = AUIDO.CASSETTE
variantName : String = Cassette based audio

CassetteAudio : SubassemblyVariant

handle : long = 0012
version : String = AUDIO.VEDIO
variantName : String = Video based audio

VideoAudio : SubassemblyVariant

Car Family

handle : long = 0002
version : String = CAR.A
variantName : String = Car A

CarA : ProductVariant

handle : long = 0003
version : String = CAR.B
variantName : String = Car B

CarB : ProductVariant

handle : long = 0004
version : String = CAR.C
variantName : String = Car C

CarC : ProductVariant

Meidal Player Family

handle : long = 0016
version : String = MP.Cassette
variantName : String = Cassette player

CassettePlayer : PartVariant

handle : long = 0017
version : String = MP.CD
variantName : String = CD player

CDPlayer : PartVariant

handle : long = 0018
version : String = MP.VIDEO
variantName : String = Video player

VideoPlayer : PartVariant

Engine Family

handle : long = 0006
version : String = ENG.1.8
variantName : String = Engine 1.8

Engine1.8 : PartVariant

handle : long = 0007
version : String = ENG.2.0
variantName : String = Engine 2.0

Engine2.0 : PartVariant

handle : long = 0008
version : String = ENG.2.2
variantName : String = Engine 2.2

Engine2.2 : PartVariant

handle : long = 0009
id : String = AUDIO-M-001
name : String = Car audio

Audio : Subassembly

handle : long = 0013
id : String = RADIO-M-001
name : String = AM/FM Radio

Radio : StandardPart

handle : long = 0005
id : String = ENG-M-001
name : String = Engine

Engine : Part

handle : long = 0015
id : String = PLAYER-M-001
name : String = Media player

MediaPlayer : Part

 

Fig.4 A simplified car family spectrum 
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handle : long = 0001
id : String = CAR-M-001
name : String = General car

Car : Product

CarEngineLink : FPPLink

handle : long = 0005
id : String = ENG-M-001
name : String = Engine

Engine : Part

handle : long = 0003
version : String = ENG.2.2
variantName : String = Engine 2.2

Engine 2.2 : PartVariant

version : String = CAR.A

EngineVersionLink1 : PPVersionLink

version : String = CAR.B

EngineVersionLink2 : PPVersionLink

version : String = CAR.C

EngineVersionLink3 : PPVersionLink

handle : long = 0006
version : String = ENG.1.8
variantName : String = Engine 1.8

Engine 1.8 : PartVariant

Car Variants

handle : long = 0002
version : String = CAR.A
variantName : String = Car A

CarA : ProductVariant

handle : long = 0003
version : String = CAR.B
variantName : String = Car B

CarB : ProductVariant

handle : long = 0004
version : String = CAR.C
variantName : String = Car C

CarC : ProductVariant

handle : long = 0007
version : String = ENG.2.0
variantName : String = Engine 2.0

Engine2.0 : PartVariant

 

Fig. 5 Relationship between a car variant and an engine variant 
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Fig. 6 Product view model      Fig. 7 Semantic representation 

 

 

Fig. 8 Semantic product definition 
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PartVariant

identity  : String
v erion : String
weight : double
stockable : boolean
shape : String

 

Fig. 9 Semantic category representation 

Intranet

Internet

BrowserBrowser

BrowserBrowser

 

Fig. 10 Architecture of the prototype system 

 

Fig. 11 The interface of a family structure view 




