

QUT Digital Repository:
http://eprints.qut.edu.au/

Ni, Qianfu and Lu, Wen Fang and Yarlagadda, Prasad K. (2008) An extensible product
structure model for product lifecycle management in the make-to-order environment.
Concurrent Engineering: Research and Applications (CERA), 16(4). pp. 243-251.

 © Copyright 2008 SAGE Publications
The final, definitive version of this article has been published in the Journal,
<Concurrent Engineering: Research & Applications (CERA), 16(4). pp. 243-251
© <SAGE Publications Ltd, 2008> by SAGE Publications Ltd at the Concurrent
Engineering: Research & Applications (CERA) page: http://cer.sagepub.com/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queensland University of Technology ePrints Archive

https://core.ac.uk/display/10883601?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 1

An Extensible Product Structure Model for Product

Lifecycle Management in the Make-to-Order Environment
Q.F. Nia, W.F. Lu b,* and Prasad KDV Yarlagaddaa

aSchool of Engineering Systems, Queensland University of Technology, PO Box 2434, Brisbane,Q4001 Australia

 bCentre for Design Technology/Department of Mechanical Engineering, National University of Singapore, 10 Kent

Ridge Crescent, Singapore 119260

Abstract

This paper presents a product structure model with a semantic representation technique that make the product

structure extensible for developing product lifecycle management (PLM) systems that is flexible for

make-to-order environment. In the make-to-order business context, each product could have a number of

variants with slightly different constitutions to fulfill different customer requirements. All the variants of a

family have common characteristics and each variant has its specific features. A master-variant pattern is

proposed for building the product structure model to explicitly represent common characteristics and specific

features of individual variants. The model is capable of enforcing the consistency of a family structure and its

variant structure, supporting multiple product views, and facilitating the business processes. A semantic

representation technique is developed that enables entity attributes to be defined and entities to be categorized in

a neutral and semantic format. As a result, entity attributes and entity categorization can be redefined easily

with its configurable capability for different requirements of the PLM systems. An XML-based language is

developed for semantically representing entities and entity categories. A prototype as a proof-of-concept system

is presented to illustrate the capability of the proposed extensible product structure model.

Keywords: Product structure; product data management; product lifecycle management; semantic representation

* Corresponding author. Tel.: +65 6516 1228; fax: +65 0000 0000.

E-mail addresses: q2.ni@qut.edu.au (Q.F. Ni), mpelwf@nus.edu.sg (W.F. Lu) and y.prasad@qut.edu.au (P.
KDV Yarlagadda).

 2

1 Introduction

Product structure, which is a hierarchical tree representing the classification of components

that compose a product and the interrelationships of the components, is key information widely

used by various business activities performed at different stages [1-3]. PLM is a strategic

business principle to make product information consistent and sharable throughout an entire

product lifecycle, and associate other relevant information created at each stage with product

structures to serve the needs of downstream stages [4].

To provide customers with tailor-made products faster, better and cheaper, manufacturers

have shifted their production mode to mass customization to take advantage of mass

production for small batch-size production [5]. For such an environment, a product initially

consists of a common base and modularized functional subsystems to form a customization

platform [6]. Accordingly, essentially needed is a product structure model capable of flexibly

representing product families and product variants with attention to different business

processes in a product lifecycle. A good product structure model should be able to synchronize

a family structure and its variant structures. At present, research generally attends to structure

and represent detailed data related to a single product, and many product structure models are

specifically developed for the different products. Product structure models considering product

family and capable of supporting PLM rarely exists [7].

In implementation of PLM systems, much customization work is needed to tailor a system

for a particular enterprise through redesign and redevelopment. Customization is necessary

mainly because entities and entities attributes of the same entity to be managed vary from one

 3

company to another due to the different business strategies. In PLM, different functional

departments may have different needs to product representation. Ideally, a product structure

model should be developed by taking into consideration all the requirements of different

business processes. However, it is almost impossible [7]. Furthermore, due to the need to

change their business strategies, new requirements might be required. A good approach to

fulfill the need of frequently changing requirements is to develop a PLM system that enables

enterprises to reconfigure the system when needed. The flexibility of a PLM system relies

heavily on extensibility of a product structure model underpinning the system. The focus of this

research is on the modeling of PLM system for a make-to-order environment. The extensible

product structure model presented in this paper is one of key outcomes of the research.

2 Related research review

One essential function of PDM systems is to manage product structure [3]. However, few

available PDM systems are powerful to manage product structures for mass customization

because of the limitations of product structure models at representation of product families [8].

In addition, most product structure models underlying PDM systems lack of the ability to

support integration of other business processes, such as planning and production [9, 10].

A few reports can be found on product structure models for representing product families.

Sudarsan [11] presented a Product Family Evolution Model (PFEM) to address product family

representation for the product information modeling framework. However, PFEM pays little

attention to representation of common characteristics of a family and particular characteristics

of a variant. Du [12] reported a product structure model to represent product family in the mass

 4

customization context with functional view, technical view and structural view. This model is

helpful for companies to shift from the individual product development to family-based design

by providing a systematic method to establish a building block repository and configuration

rules. It lacks of the ability to support design process management. Fujita [13] proposed a

product structure representation by decomposing a product into different subsystems. The

model only puts its focus on maximizing product varieties using minimum building blocks to

achieve optimized a customization platform. Janitza [8] also reported a product model for mass

customization by incorporating product decomposition and part specification into one model.

This model provides a highly flexible product model specification for the product designer and

simpler configuration for the customer. The family representation and variant representation

has not received enough attention and synchronization of two representations is not addressed.

Based on the literature review, some of main research gaps in product structure modeling

were identified, including 1) explicit representations of common characteristics of product

family and specific features of product variants; 2) synchronization of a family model and its

variant models in the context of mass customization; 3) integration of production structure and

other business object models; and 4) extensibility of product structure models for flexible PLM

systems. The product structure model reported in this paper attempts to fill these gaps to

support development of a flexible PLM system for entire product lifecycle.

3 Abstract Product Structure Model

3.1 Master-variant pattern

To enable the model to effectively represent the common features of a family and special

 5

features of different variants, a master-variant pattern, as shown in Fig. 1, is proposed for

establishing the product structure model. In the model, the interfaces IMaster and IVariant are

modeled to represent common properties and behaviors of families and variants respectively.

The interface IMVLink represents common properties and behaviors of associations between

masters and variants. The cardinalities of the association between IMaster and IVariant imply

that one master can have one or unlimited variants and a variant should have and only can have

one master. A master cannot exist without a variant, and vice versa. In this pattern, attributes

common to all variants should be defined in master classes. Attributes specific to variants

should be modeled in variant classes. In this pattern, IMaster is an abstract for grouping

variants and represents common characteristics of a family while IVariant represents the

special characteristics of individual variants.

In the model, the attributes id and name are defined to uniquely identify individual families.

The attribute version is used to differentiate variants in a family. The model implies that all

variants can share the same id and name and each variant can have a special name by defining

the attribute variantName in the class Variant.

The master-variant pattern offers three main advantages: 1) it provides a clear boundary

between the family representation and the variant representation. At the same time, it offers the

capability of maintaining the data integrity; 2) it is capable of representing common

characteristics of families and specific characteristics of individual variants; and 3) it can

flexibly meet different requirements of different business processes. Masters or variants can be

explicitly used as inputs to a business process and associated information can be explicitly

linked to masters or variants.

 6

3.2 Product structure model

Based on the master-variant pattern, the product structure model shown in Fig. 2 is

developed. In the model, product, part and subassembly are represented by three groups of

classes respectively: Product, ProductVariant and ProductMVLink, Part, PartVariant and

PartMVLink as well as Subassembly, SubassemblyVariant and SubassemblyMVLink. The

classes Product, Part and Subassembly represents product families, part families and

subassembly families respectively while the classes ProductVariant, PartVariant and

SubassemblyVariant represent product variants, part variants and subassembly variants.

3.2.1 Family Structure

For clarity of presentation, the family structure model in Fig. 2 is presented specifically in

Fig. 3. In the model, aggregation associations between Product and Part, Subassembly as well

as StandardPart implies that a product can consist of non-standard parts, subassemblies and

standard parts. Part and Subassembly are master classes that represents a family rather than a

specific product. Hence, the model shown in Fig. 3 only reflects what part families,

subassembly families and standard parts are involved in a product family. It does not provide

information about which variant of a part family or a subassembly family is involved in a

product variant. However, based on the master-variant link, all part variants and subassembly

variants are clearly reflected. Therefore, the family model provides an overall view of a

product family about product variants and all optional part variants and subassembly variants.

Such a overview is called product family spectrum [10].

Fig. 4 shows the example of the spectrum view of a simplified car family based on the

proposed model. A car family, represented by Car:Product, can consist of an audio subsystem,

 7

represented by Audio:Subassembly, and an engine, represented by Engine:Part. Further, an

audio subassembly consists of a radio subsystem, represented by Radio:StandardPart, and a

media player, represented by MediaPlayer:Subassembly. From the spectrum, it can clearly see

that three types of engines with different rated powers and three types of audio subsystems,

which are cassette player, CD player and video player, are available for selection.

The spectrum can effectively assist designers to configure products for customers, amend

design to reorganize existing functions into configurable subsystems, design new alternative

subsystems, or develop new functional subsystems to enhance customizability of a family. It

can also help customers to configure products during the preparation of orders.

3.2.2 Variant Structure

A variant structure should clearly reflect what part variants and subassembly variants are

used. At the same time, the model should be capable of enforcing the consistency of the family

structure and variant structures. To achieve this goal, the variant structure model is built on the

top of the family structure model. As shown in Fig. 2, FPPLink and FPSLink respectively

represent associations of a product family with a part family and a subassembly family, and

FSSLink represents association of a subassembly family with other subassembly families. To

further represent variant structures, three association classes, i.e. PPVersionLink,

PSVersionLink and SSVersionLink, are defined to associate FPPLink with PartVaraint,

FPSLink with SubassemblyVariant and FSSLink with SubassemblyVariant. PPVersionLink,

PSVersionLink and SSVersionLink are called version links and its key attribute is version. The

value of this attribute indicates which product variant or subassembly variant that the

associated variant is used for.

 8

To explain the variant structure model, the relationships between a car variant and engine

variants are taken as an example. As shown in Fig. 5, the car family has three variants, i.e. CarA,

CarB and CarC, and the engine family also has three variants, which are Engine1.8, Engine2.0

and Engine2.2. Car and Engine are associated through CarEngineLink, an instance of FPPLink.

FPPLink is incapable of providing information about which engine variant is used for CarA,

CarB and CarC respectively. To reflect the associations between the engine variants and the car

variants, three version link instances are introduced, i.e. EngineVersionLink1,

EngineVersionLink2 and EngineVersionLink3 to associate Engine1.8, Engine2.0 and Engine2.2

with CarEngineLink respectively. The attribute version in the version link classes plays the role

of specifying which car variant each associated engine variant is used. From Fig. 5, it is clear

that Engine1.8 is used for CarA as the value of the attribute version of EngineVersionLink1 is

CAR.A, which should be the same as that of the attribute version of CarA.

Compared to the variant structure model, a significant advantage of this model is that the

family structure model and the variant structure model are integrated. As a result, product

variant structures can be well controlled by the corresponding product family structure. For

example, if the engine family in Fig. 4 was not associated with the car family, CarEngineLink

would not exist. Consequently, no engine variants could be associated with any product

variants. This feature is very significant to companies which manage multiple families and

there exist multiple subsystems that provide same functions, but are not exchangeable

crossover families. For instance, two engine families are maintained for two car families

respectively without exchangeability. While configuring products, this model can effectively

prevent from selecting incompatible variants based on the family structure.

 9

4 Lifecycle Management Support

4.1 Product view model

Users with different disciplines usually look into products from different prospective. For

example, purchasing staff are only interested in the components which are to be purchased

from suppliers. A production manager may only concern the components which are to be made

or assembled internally. In product lifecycle management, a product should be represented in

different ways to fulfill different needs in addition to product structure. These representations

should be consistent with product structure, which completely reflects product constitution and

relationships of constitutional components from the prospective of functions and structures

[14]. Hence, the proposed product structure model is extended to support product views. A

product view is a hierarchical representation to associate some of components of a production

in different ways to fulfill needs of a specific stage in a product lifecycle. In product view

management, an essential requirement is that a product should be independent of its product

structure. However, it should be easily synchronized with product structure. As shown in Fig. 6,

a reference mechanism is adopted to realize product views. A product view, represented by the

class ProductView, consists of a set of instances of PartRef and/or SubassemblyRef organized

in a hierarchical structure. As they are constructed using part references and subassembly

references, product views are independent of a product structure. However, the reference

mechanism enables product views to be linked back to product structure. Synchronization

between product views and the corresponding product structure can be achieved. A reference is

a pointer which does not contain the actual data of a part or a subassembly. Therefore, no

duplications of data exist and data consistency can be easily maintained. A product can have

 10

multiple views, such as manufacturing view, bill of material view and engineering change view.

Categorization of product views is realized based on view roles, represented by the link class

ViewRole. The ability to support product views enables the model to better support PLM.

4.2 Integration with other processes

The proposed product structure model differentiates standard parts and non-standard parts.

Standard parts are purchased from suppliers. Non-standard parts may go through other

business processes, such as production process or outsourcing process.

The interfaces IStockable, IPurchasable and IOutsourcable in Fig.2 are modeled to enforce

the implementing classes to comply with the processing rules of stock management, purchase

management and outsourcing management. The implementation of IStockable by variant

classes, i.e. ProductVariant, PartVariant and SubassemblyVariant, implies that common parts,

subassemblies and even products are allowed to be made to stock. Further, it enables

make-to-order and make-to-stock decision to be made at a variant level. As a result, in a part or

subassembly family, variants commonly demanded can be made to stock while variants only

demanded by a few of customers may be particularly made when being ordered. The model is

able to support the main objective of mass customization by taking advantage of volume

production and also able to deliver tailored products for customers.

5 Extensibility and Semantic Representation

5.1 Concept of semantic representation

The product structure model discussed above is rather abstract. To make it useful for PLM

systems, the model needs to be extended according to industrial sectors. The object-oriented

 11

approach to derive a specific model based on an abstract model is called generalization, which

is a process to define subclasses by extending abstract classes to represent specific types. For

example, the subclasses Shaft and Gear may be defined by extending the abstract class Part to

represent shafts and gears. However, companies in different industrial sectors have different

types of products, parts and subassemblies. Even companies in the same industrial sector may

categorize these items in different ways due to the difference of business practices. The

identification of subclasses and essential attributes of each subclass might be difficult at the

stage of creating a specific product structure model. In addition, specific models are usually

established at the design stage of system development and are built into a PLM system. In such

a way, any changes to a model will cause redeveloping the system. Such a PLM system also

lacks of the flexibility to support changes of business strategies.

It is imperative to develop extensible product structure model for developing flexible PLM

systems that can be easily specialized for a particular company with minimized redesign and

redevelopment. Essentially, an extensible product structure model should be represented in a

semantic approach and loosely coupled with system codes. In such a system, a semantic

product structure model serves as an instructor who guides and controls execution of system

codes. In turn, system codes act as executives to carry out information processing by

interpreting instructions in a semantic product structure model. When the models are changed

or replaced, the codes can manipulate information according to new models. Therefore, PLM

systems based on a semantic product structure model is highly flexible and reconfigurable and

they can be easily deployed to different companies, even in different industrial sectors.

 12

5.2 Semantic representation framework

Semantic representation for the developed product structure model is shown in Fig. 7. A set

of attribute definition is aggregated to define the entities of products, parts or subassemblies.

An attribute definition has a AttributeSpecification associated, which defines attribute name,

type and title. An attribute can be further characterized by providing a default value, value

sources, value validation rules and other constraints. A value source contains information for

determining value candidates of an attribute. A value validation defines rules as an expression

for verifying and validating a value to be assigned to an attribute. The model separates the

default value configuration and descriptive title configuration from the attribute declaration.

This enables users with different knowledge work together to compose semantic models. In

system implementation, people who have detailed knowledge of the system can work on

attribute declarations while users with general knowledge can define default values and titles.

The model provides a text resource configuration for defining texts in key-value pairs. Text

entries in the text resource configuration are referred by other configurations using keys.

5.3 XML-based representation language

Fig. 8 shows a simplified XML-based product entity model. The tag entity is used to declare

an information entity. The tag attribute, which is nested to the tag entity, is introduced to

declare entity attributes. Attribute name, data type and display title are compulsory information

in the definition of attributes. Data type and display title are defined by the nested tags type and

title. The tag extended is employed to indicate an attribute is extended if the tag value is “true”,

or a built-in one if the tag value is “false”. The tag attribute can have a nested tag deprecated.

Value constraints can be defined for individual attributes and need to be defined in

 13

accordance with data types. For example, legal constraints for the text type include: 1)

maximum length of a value; 2) only upper cases or lower cases are accepted; and 3) whether

spaces are permitted. Complicated validation conditions can be defined in value validation. A

validation condition is an expression represents a validating logic. Three types of value sources

are supported. The constant value source defines a set of constants as the candidate values of an

attribute. The query value source provides information for construct SQL statements to query

objects as candidate values. The navigation value source provides information for acquiring

objects associated with the current object as the candidate values of an attribute.

5.4 Semantic category representation

The approach of creating different subclasses to represent different types of products, parts

and subassemblies results in a rigid specific model. Therefore, this paper develops a semantic

category representation for flexible categorization. As shown in Fig. 9, the semantic category

representation represents categorization in a hierarchical format. The tag category defines a

category using three parameters: key, title and schema. The attribute schema contains a

keyword pointing to a group of attribute definitions associated with the category. A collective

category, such as gear, can have sub-categories, such as cylindrical gear and conical gear,

which are represented as nested elements of the collective category. The attributes defined for a

collective group will be inherited by all its sub-categories. Apart from attributes defined in the

class PartVariant, instances of CylindricalGear and ConicalGear also have attribute

teethNumber which is defined for the category gear. At the same time, CylindricalGear and

ConicalGear instances have specific attributes respectively to characterize cylindrical gears

and conical gears. This approach does not require identifying all subclasses at a design stage as

 14

categories and category-related attributes can be defined even after system development.

6 Prototype

A prototype system with functions for project management, product configuration

management and inventory management has been developed based on the proposed product

structure model and semantic representations. Fig. 10 shows the multi-tier and web-based

architecture of the system. The kernel in the architecture is the system services, which are

organized into three layers: foundation layer, functional layer and domain layer.

On the foundation layer, the entity service is responsible for managing information entities

by taking into consideration semantically defined attributes and category-related attributes.

While creating instances of product and entities, the service checks the semantic definitions

and consolidates both entity-related and category-related semantic attributes defined. The

relationship service provides functions for managing entity relationships. This service also

ensures that a master at least has one variant associated and no variant can exist without a

master. The persistence service acts as a gateway of database access. It maps information

entities to corresponding tables while storing information entities and instantiates appropriate

objects while retrieving information from database. These three services work together to make

transparent the master-variant concept and semantic representations to other services.

The functional layer offers common functions, such as document management to support

the domain layer. The document service is responsible for associating various documents, such

as engineering drawings, with products and parts. Its main responsibility is to wrap documents

as binary objects and associate the document with an object – a document owner by leveraging

 15

the relationship service. The report service provides a template-based method to generate

various reports for information exchange and sharing. By cooperating with the document

service, reports can be associated with other objects, such as projects, products or parts.

The domain services are developed to provide functions to integrate and manage business

processes. Functions for project management include project initialization, project schedule

and progress tracking. In the make-to-order environment, there are internal projects and

external projects. Internal projects are initialized to manage family design and plan the

production of common parts, subassembly and functional subsystems. External projects are

created based on customer orders to fulfill customer requirements by cooperating with the

inventory service and the resource service. In general, internal projects are managed based on

family structures while external projects work on variant structures. The product service

provides the capability to manage product family structures, variant structures, part families,

subassembly families and a standard part library to assist product configuration, process

planning and workshop task generation. Fig. 12 shows the interface of a family structure view

with two families, i.e. a car family and a truck family. The inventory service manages stocks of

common parts and commonly demanded variants. The resource service manages capacities and

capabilities of resources, such as machines, materials, and operators to support design task

management, process planning and workshop task management.

7 Conclusion

PLM systems are complex and the implementation is costly and time-consuming with

potential failures. Our research focuses on the modeling and designing a PLM system which

 16

can be easily configured with minimum redesign and redevelopment for different companies

and reconfigured for new business opportunities even after the system is developed. This paper

presents the key outcome of the research, an extensible product structure model, which is

critical to PLM systems with flexibility for the make-to-order environment.

In this paper, a master-variant pattern is developed to establish such a product structure

model to represents common characteristics of a product family and particular characteristics

of a product variant. This model is capable of maintaining a clear boundary between product

family structures and variant structures as well as consistency of a family structure and its

variant structures. The model is also able to support integration with other business processes.

To make the product structure model extensible, a semantic representation technique has

proposed to represent entity definition and entity categorization. The semantic categorization

representation enables to flexible define categories and a set of attributes can be defined

semantically and associated with each category. This technique enables to extend the abstract

product structure model to a specific model for developing PLM systems with flexibility.

A prototype system for proof-of-concept is developed to demonstrate the proposed

extensible product structure model and the semantic representation techniques to support

product configuration. In particular, this prototype with multi-tier and web-based architecture

is developed to show the capabilities of the proposed modelfor the flexibility of a PLM system.

References

[1] W. He, Q. F. Ni, X. Ming, and W. F. Lu, "Product Structure Management for Enterprise Business Processes
in Product Lifecycle," Proceedings of 11th ISPE International Conference on Concurrent Engineering,
Beijing, China, 2004.

[2] T. Mannisto, H. Peltonen, A. Martio, and R. Sulonen, "Modelling generic product structures in STEP,"
Computer-Aided Design, vol. 30, pp. 1111-1118, 1998.

[3] B. Eynard, T. Gallet, P. Nowak, and L. Roucoules, "UML based specifications of PDM product structure and

 17

workflow," Computers in Industry, vol. 55, pp. 301-316, 2004.
[4] G. Thimm, S. G. Lee, and Y.-S. Ma, "Towards unified modelling of product life-cycles," Computers in

Industry, vol. 57, pp. 331-341, 2006.
[5] Q. Ni, X. Ming, and W. F. Lu, "Computer-Supported Collaborative Environment for Distributed Product

Development," Proceedings of International Conference for Agile Manufacturing, Beijing, Chian, 2003.
[6] B. MacCarthy, P. G. Brabazon, and J. Bramham, "Fundamental modes of operation for mass customization,"

International Journal of Production Economics, vol. 85, pp. 289-304, 2003.
[7] Q. Shu and C. Wang, Information Modeling for Product Lifecycle Management, 183 ed, 2005.
[8] D. Janitza, M. Lacher, M. Maurer, U. Pulm, and H. Rudolf, "A product model for mass-customisation

products," Lecture Notes in Computer Science, vol. 2774, pp. 1023-1029, 2003.
[9] A.-P. Hameri and J. Nihtila, "Product data management--exploratory study on state-of-the-art in

one-of-a-kind industry," Computers in Industry, vol. 35, pp. 195-206, 1998.
[10] W. He, Q. F. Ni, and B. H. Lee, "Enterprise Business Information Management System based on PDM

Framework," presented at IEEE International Conference on Systems, Man & Cybernetics, Washington,
D.C., USA, 2003.

[11] R. Sudarsan, S. J. Fenves, R. D. Sriram, and F. Wang, "A product information modeling framework for
product lifecycle management," Computer-Aided Design, vol. 37, pp. 1399-1411, 2005.

[12] X. F. Du, J. X. Jiao, and M. Tseng, "Architecture of Product Family for Mass Customization," presented at
IEEE International Conference on Management of Innovation and Technology, 2000.

[13] K. Fujita, "Product variety optimization under modular architecture," Computer-Aided Design, vol. 34, pp.
953-965, 2002.

[14] F. Fuxin, "Configurable product views based on geometry user requirements," Computer-Aided Design, vol.
37, pp. 957-966, 2005.

[15] Z. Zhang, M. K. O. Lee, P. Huang, L. Zhang, and X. Huang, "A framework of ERP systems implementation
success in China: An empirical study," International Journal of Production Economics, 2004.

IMVLink

getHandle() : long
getMasterHandle() : long
getVariantHandle() : long

<<Interface>>

IVariant

getHandle() : long
getVerson() : String
getVariantName() : String

<<Interface>>
IMaster

getHandle() : long
getId() : String
getName() : String

<<Interface>>

1..*1

+variant

1..*

+family

1

MVLink

masterIdentity : long
variantIdentity : long

Variant

handle : long
version : String
variantName : String

Master

handle : long
id : String
name : String 1..*1 1..*1

Fig.1 Master-variant pattern

 18

PSVersionLink

version : String
quanti ty : int

SSVersionLink

version : String
quanti ty : int

PPVersionLink

version : String
quanti ty : int

IPurchasable
<<Interface>>

IStockable

isStocked()

<<Interface>>

ProductMVLink

SubassemblyMVLink

PartMVLink

IOutsourcable
<<Interface>>

IStockable

isStocked()

<<Interface>>

IStockable

isStocked()

<<Interface>>

SPVersionLink

AbstractPart

id : String
name : String
category : String

<<Abstract>>

IMaster
<<Interface>>

Variant

Variant

IMaster
<<Interface>>

MVLink

Variant

Master

MVLink

MVLink

FSSLink

FPSLink

FPPLink

FSPLink

MaterialStock

SubassemblyVariant

identity : String
version : String
weight : double
stockable : boolean

1

0..*

1

0..*

1

0..*

1

0..*

PartVariant

identity : String
verion : String
weight : double
stockable : boolean
shape : String

0..*
1

0..*
1

1

0..*

1

0..*

1
1
1
1

StandardPart

ProductVariant

version : String
weight : double
stock : boolean

Subassemby

id : String
name : String

0..*

0..*

0..*

0..*0..*

0..*

0..*

0..*

0..*

0..*

0..*

0..*

Part
1

0..*

1

0..*

0..*

0..*

0..*

0..*

Product

id : String
name : String

0..*

0..*

0..*

0..*

1..*

1

1..*

1

0..*
0..*

0..*
0..*

0..*

0..*

0..*

0..*

Fig.2 Product structure model

FSSLink

FPSLink

FPPLink

FSPLink

SubassemblyVariant

identity : String
version : String
weight : double
stockable : boolean

PartVariant

identity : String
verion : String
weight : double
stockable : boolean
shape : String

StandardPart

ProductVariant

version : String
weight : double
stock : boolean

Subassemby

id : String
name : String

0..*

0..*

0..*

0..*

0..*

0..*

0..*

0..*

0..*

0..*

0..*

0..*

Part

1

0..*

1

0..*

0..*
0..*

0..*
0..*

Product

id : String
name : String

0..*

0..*

0..*

0..*1..*

1

1..*

1

0..* 0..*0..* 0..*

0..*

0..*

0..*

0..*

Fig.3 Product family model
Family Structure

handle : long = 0001
id : String = CAR-M-001
name : String = General car

Car : Product
Audio Family

handle : long = 0011
version : String = AUIDO.CD
variantName : String = CD based audio

CDAudio : SubassemblyVariant

handle : long = 0010
version : String = AUIDO.CASSETTE
variantName : String = Cassette based audio

CassetteAudio : SubassemblyVariant

handle : long = 0012
version : String = AUDIO.VEDIO
variantName : String = Video based audio

VideoAudio : SubassemblyVariant

Car Family

handle : long = 0002
version : String = CAR.A
variantName : String = Car A

CarA : ProductVariant

handle : long = 0003
version : String = CAR.B
variantName : String = Car B

CarB : ProductVariant

handle : long = 0004
version : String = CAR.C
variantName : String = Car C

CarC : ProductVariant

Meidal Player Family

handle : long = 0016
version : String = MP.Cassette
variantName : String = Cassette player

CassettePlayer : PartVariant

handle : long = 0017
version : String = MP.CD
variantName : String = CD player

CDPlayer : PartVariant

handle : long = 0018
version : String = MP.VIDEO
variantName : String = Video player

VideoPlayer : PartVariant

Engine Family

handle : long = 0006
version : String = ENG.1.8
variantName : String = Engine 1.8

Engine1.8 : PartVariant

handle : long = 0007
version : String = ENG.2.0
variantName : String = Engine 2.0

Engine2.0 : PartVariant

handle : long = 0008
version : String = ENG.2.2
variantName : String = Engine 2.2

Engine2.2 : PartVariant

handle : long = 0009
id : String = AUDIO-M-001
name : String = Car audio

Audio : Subassembly

handle : long = 0013
id : String = RADIO-M-001
name : String = AM/FM Radio

Radio : StandardPart

handle : long = 0005
id : String = ENG-M-001
name : String = Engine

Engine : Part

handle : long = 0015
id : String = PLAYER-M-001
name : String = Media player

MediaPlayer : Part

Fig.4 A simplified car family spectrum

 19

handle : long = 0001
id : String = CAR-M-001
name : String = General car

Car : Product

CarEngineLink : FPPLink

handle : long = 0005
id : String = ENG-M-001
name : String = Engine

Engine : Part

handle : long = 0003
version : String = ENG.2.2
variantName : String = Engine 2.2

Engine 2.2 : PartVariant

version : String = CAR.A

EngineVersionLink1 : PPVersionLink

version : String = CAR.B

EngineVersionLink2 : PPVersionLink

version : String = CAR.C

EngineVersionLink3 : PPVersionLink

handle : long = 0006
version : String = ENG.1.8
variantName : String = Engine 1.8

Engine 1.8 : PartVariant

Car Variants

handle : long = 0002
version : String = CAR.A
variantName : String = Car A

CarA : ProductVariant

handle : long = 0003
version : String = CAR.B
variantName : String = Car B

CarB : ProductVariant

handle : long = 0004
version : String = CAR.C
variantName : String = Car C

CarC : ProductVariant

handle : long = 0007
version : String = ENG.2.0
variantName : String = Engine 2.0

Engine2.0 : PartVariant

Fig. 5 Relationship between a car variant and an engine variant

PartRef SubassemblyRef 1

0..1

SubassemblyVariant

identi ty : String
version : String
weight : double
stock : boolean

1

0..*

1

0..*

Project

PartVariant

identi ty : String
verion : String
weight : double
stock : boolean
shape : String

1 0..*1 0..*

0..1

1

ProductView

0..*

1

0..*

1

ViewRole

ProductVariant

version : String
weight : double
stock : boolean

1

0..*

11..*1..* 1

1

0..*

Fig. 6 Product view model Fig. 7 Semantic representation

Fig. 8 Semantic product definition

 20

PartVariant

identity : String
v erion : String
weight : double
stockable : boolean
shape : String

Fig. 9 Semantic category representation

Intranet

Internet

BrowserBrowser

BrowserBrowser

Fig. 10 Architecture of the prototype system

Fig. 11 The interface of a family structure view

