22,487 research outputs found

    Conduction mechanisms of epitaxial EuTiO3 thin films

    Full text link
    To investigate leakage current density versus electric field characteristics, epitaxial EuTiO3 thin films were deposited on (001) SrTiO3 substrates by pulsed laser deposition and were post-annealed in a reducing atmosphere. This investigation found that conduction mechanisms are strongly related to temperature and voltage polarity. It was determined that from 50 to 150 K the dominant conduction mechanism was a space-charge-limited current under both negative and positive biases. From 200 to 300 K, the conduction mechanism shows Schottky emission and Fowler-Nordheim tunneling behaviors for the negative and positive biases, respectively. This work demonstrates that Eu3+ is one source of leakage current in EuTiO3 thin films.Comment: 17 pages,4 figures, conferenc

    Indirect exchange of magnetic impurities in zigzag graphene ribbon

    Full text link
    We use quantum Monte Carlo method to study the indirect coupling between two magnetic impurities on the zigzag edge of graphene ribbon, with respect to the chemical potential μ\mu. We find that the spin-spin correlation between two adatoms located on the nearest sites in the zigzag edge are drastically suppressed around the zero-energy. As we switch the system away from half-filling, the antiferromagnetic correlation is first enhanced and then decreased. If the two adatoms are adsorbed on the sites belonging to the same sublattice, we find similar behavior of spin-spin correlation except for a crossover from ferromagnetic to antiferromagentic correlation in the vicinity of zero-energy. We also calculated the weight of different components of d-electron wave function and local magnet moment for various values of parameters, and all the results are consistent with those of spin-spin correlation between two magnetic impurities.Comment: 3 pages, 4 figures, conference proceedin

    A non-intrusive method for estimating binaural speech intelligibility from noise-corrupted signals captured by a pair of microphones

    Get PDF
    A non-intrusive method is introduced to predict binaural speech intelligibility in noise directly from signals captured using a pair of microphones. The approach combines signal processing techniques in blind source separation and localisation, with an intrusive objective intelligibility measure (OIM). Therefore, unlike classic intrusive OIMs, this method does not require a clean reference speech signal and knowing the location of the sources to operate. The proposed approach is able to estimate intelligibility in stationary and fluctuating noises, when the noise masker is presented as a point or diffused source, and is spatially separated from the target speech source on a horizontal plane. The performance of the proposed method was evaluated in two rooms. When predicting subjective intelligibility measured as word recognition rate, this method showed reasonable predictive accuracy with correlation coefficients above 0.82, which is comparable to that of a reference intrusive OIM in most of the conditions. The proposed approach offers a solution for fast binaural intelligibility prediction, and therefore has practical potential to be deployed in situations where on-site speech intelligibility is a concern

    Predicting binaural speech intelligibility from signals estimated by a blind source separation algorithm

    Get PDF
    State-of-the-art binaural objective intelligibility measures (OIMs) require individual source signals for making intelligibility predictions, limiting their usability in real-time online operations. This limitation may be addressed by a blind source separation (BSS) process, which is able to extract the underlying sources from a mixture. In this study, a speech source is presented with either a stationary noise masker or a fluctuating noise masker whose azimuth varies in a horizontal plane, at two speech-to-noise ratios (SNRs). Three binaural OIMs are used to predict speech intelligibility from the signals separated by a BSS algorithm. The model predictions are compared with listeners' word identification rate in a perceptual listening experiment. The results suggest that with SNR compensation to the BSS-separated speech signal, the OIMs can maintain their predictive power for individual maskers compared to their performance measured from the direct signals. It also reveals that the errors in SNR between the estimated signals are not the only factors that decrease the predictive accuracy of the OIMs with the separated signals. Artefacts or distortions on the estimated signals caused by the BSS algorithm may also be concerns

    Superconducting correlations in ultra-small metallic grains

    Full text link
    To describe the crossover from the bulk BCS superconductivity to a fluctuation-dominated regime in ultrasmall metallic grains, new order parameters and correlation functions, such as ``parity gap'' and ``pair-mixing correlation function'', have been recently introduced. In this paper, we discuss the small-grain behaviour of the Penrose-Onsager-Yang off-diagonal long-range order (ODLRO) parameter in a pseudo-spin representation. Relations between the ODLRO parameter and those mentioned above are established through analytical and numerical calculations.Comment: 7 pages, 1 figur
    corecore