23,208 research outputs found

    Research on conflict management: a case study about small work groups in China

    Get PDF
    This research is focused on a qualitative case study about conflict management in small work groups in China. Data were gathered in companies that have their offices in four Chinese cities, including Guangzhou, Shenzhen, Bozhou and Fuyang. 74 informants from 26 work teams participated in this study. Participants were asked to recall events happened in their teams through face-to-face interviews. This case study aims to understand what types of conflict people experienced in their teams, the strategies people adopted to deal with conflicts and the orientations that emerge in the conflict management process. Overall, results show that the most common type of conflict is relationship conflict. With regard to conflict management styles, integrating and compromising styles are more frequent among managers, whereas avoiding, obliging and dominating styles are more frequent among subordinates. Overall, most of orientations are constructive. Furthermore, the findings were interpreted based on the Chinese culture.info:eu-repo/semantics/publishedVersio

    Catastrophic eruption of magnetic flux rope in the corona and solar wind with and without magnetic reconnection

    Full text link
    It is generally believed that the magnetic free energy accumulated in the corona serves as a main energy source for solar explosions such as coronal mass ejections (CMEs). In the framework of the flux rope catastrophe model for CMEs, the energy may be abruptly released either by an ideal magnetohydrodynamic (MHD) catastrophe, which belongs to a global magnetic topological instability of the system, or by a fast magnetic reconnection across preexisting or rapidly-developing electric current sheets. Both ways of magnetic energy release are thought to be important to CME dynamics. To disentangle their contributions, we construct a flux rope catastrophe model in the corona and solar wind and compare different cases in which we either prohibit or allow magnetic reconnection to take place across rapidly-growing current sheets during the eruption. It is demonstrated that CMEs, even fast ones, can be produced taking the ideal MHD catastrophe as the only process of magnetic energy release. Nevertheless, the eruptive speed can be significantly enhanced after magnetic reconnection sets in. In addition, a smooth transition from slow to fast eruptions is observed when increasing the strength of the background magnetic field, simply because in a stronger field there is more free magnetic energy at the catastrophic point available to be released during an eruption. This suggests that fast and slow CMEs may have an identical driving mechanism.Comment: 7 pages, 4 figures, ApJ, in press (vol. 666, Sept. 2007

    Spin and orbital valence bond solids in a one-dimensional spin-orbital system: Schwinger boson mean field theory

    Full text link
    A generalized one-dimensional SU(2)×SU(2)SU(2)\times SU(2) spin-orbital model is studied by Schwinger boson mean-field theory (SBMFT). We explore mainly the dimer phases and clarify how to capture properly the low temperature properties of such a system by SBMFT. The phase diagrams are exemplified. The three dimer phases, orbital valence bond solid (OVB) state, spin valence bond solid (SVB) state and spin-orbital valence bond solid (SOVB) state, are found to be favored in respectively proper parameter regions, and they can be characterized by the static spin and pseudospin susceptibilities calculated in SBMFT scheme. The result reveals that the spin-orbit coupling of SU(2)×SU(2)SU(2)\times SU(2) type serves as both the spin-Peierls and orbital-Peierles mechanisms that responsible for the spin-singlet and orbital-singlet formations respectively.Comment: 6 pages, 3 figure

    Hawking radiation, W-infinity algebra and trace anomalies

    Full text link
    We apply the "trace anomaly method" to the calculation of moments of the Hawking radiation of a Schwarzschild black hole. We show that they can be explained as the fluxes of chiral currents forming a W-infinity algebra. Then we construct the covariant version of these currents and verify that up to order 6 they are not affected by any trace anomaly. Using cohomological methods we show that actually, for the fourth order current, no trace anomalies can exist. The results reported here are strictly valid in two dimensions.Comment: 22 pages, typos correcte

    Ferromagnetism in 2p Light Element-Doped II-oxide and III-nitride Semiconductors

    Full text link
    II-oxide and III-nitride semiconductors doped by nonmagnetic 2p light elements are investigated as potential dilute magnetic semiconductors (DMS). Based on our first-principle calculations, nitrogen doped ZnO, carbon doped ZnO, and carbon doped AlN are predicted to be ferromagnetic. The ferromagnetism of such DMS materials can be attributed to a p-d exchange-like p-p coupling interaction which is derived from the similar symmetry and wave function between the impurity (p-like t_2) and valence (p) states. We also propose a co-doping mechanism, using beryllium and nitrogen as dopants in ZnO, to enhance the ferromagnetic coupling and to increase the solubility and activity

    Photon Momentum Transfer in Single-Photon Double Ionization of Helium

    No full text
    We theoretically and experimentally investigate the photon momentum transfer in single-photon double ionization of helium at various large photon energies. We find that the forward shifts of the momenta along the light propagation of the two photoelectrons are roughly proportional to their fraction of the excess energy. The mean value of the forward momentum is about 8/5 of the electron energy divided by the speed of light. This holds for fast and slow electrons despite the fact that the energy sharing is highly asymmetric and the slow electron is known to be ejected by secondary processes of shake off and knockout rather than directly taking its energy from the photon. The biggest deviations from this rule are found for the region of equal energy sharing where the quasifree mechanism dominates double ionization
    corecore