7,318 research outputs found

    Mass renormalisation for improved staggered quarks

    Get PDF
    Improved staggered quark actions are designed to suppress flavour changing strong interactions. We discuss the perturbation theory for this type of actions and show the improvements to reduce the quark mass renormalisation compared to naive staggered quarks. The renormalisations are of similar size as for Wilson quarks.Comment: LaTeX, 3 pages, Lattice2001(spectrum

    Highly Improved Staggered Quarks on the Lattice, with Applications to Charm Physics

    Get PDF
    We use perturbative Symanzik improvement to create a new staggered-quark action (HISQ) that has greatly reduced one-loop taste-exchange errors, no tree-level order a^2 errors, and no tree-level order (am)^4 errors to leading order in the quark's velocity v/c. We demonstrate with simulations that the resulting action has taste-exchange interactions that are at least 3--4 times smaller than the widely used ASQTAD action. We show how to estimate errors due to taste exchange by comparing ASQTAD and HISQ simulations, and demonstrate with simulations that such errors are no more than 1% when HISQ is used for light quarks at lattice spacings of 1/10 fm or less. The suppression of (am)^4 errors also makes HISQ the most accurate discretization currently available for simulating c quarks. We demonstrate this in a new analysis of the psi-eta_c mass splitting using the HISQ action on lattices where a m_c=0.43 and 0.66, with full-QCD gluon configurations (from MILC). We obtain a result of~111(5) MeV which compares well with experiment. We discuss applications of this formalism to D physics and present our first high-precision results for D_s mesons.Comment: 21 pages, 8 figures, 5 table

    The B Meson Decay Constant from Unquenched Lattice QCD

    Get PDF
    We present determinations of the B meson decay constant f_B and of the ratio f_{B_s}/f_B using the MILC collaboration unquenched gauge configurations which include three flavors of light sea quarks. The mass of one of the sea quarks is kept around the strange quark mass, and we explore a range in masses for the two lighter sea quarks down to m_s/8. The heavy b quark is simulated using Nonrelativistic QCD, and both the valence and sea light quarks are represented by the highly improved (AsqTad) staggered quark action. The good chiral properties of the latter action allow for a much smoother chiral extrapolation to physical up and down quarks than has been possible in the past. We find f_B = 216(9)(19)(4) (6) MeV and f_{B_s} /f_B = 1.20(3)(1).Comment: 4 pages, 2 figure

    On the strange quark mass with improved staggered quarks

    Get PDF
    We present results on the sum of the masses of light and strange quark using improved staggered quarks. Our calculation uses 2+1 flavours of dynamical quarks. The effects of the dynamical quarks are clearly visible.Comment: Lattice2002(spectrum) Latex 3 pages, 2 figure

    Unquenching effects on the coefficients of the L\"uscher-Weisz action

    Get PDF
    The effects of unquenching on the perturbative improvement coefficients in the Symanzik action are computed within the framework of L\"uscher-Weisz on-shell improvement. We find that the effects of quark loops are surprisingly large, and their omission may well explain the scaling violations observed in some unquenched studies.Comment: 7 pages, 5 figures, uses revtex4; version to appear in Phys.Rev.

    From Spinor Geometry to Complex General Relativity

    Full text link
    An attempt is made of giving a self-contained (although incomplete) introduction to holomorphic ideas in general relativity, following work over the last thirty years by several authors. The main topics are complex manifolds, two-component spinor calculus, conformal gravity, alpha-planes in Minkowski space-time, alpha-surfaces and twistor geometry, anti-self-dual space-times and Penrose transform, spin-3/2 potentials, heaven spaces and heavenly equations.Comment: With kind permission from Springer Science and Business Media to use material in the first 5 sections taken from the 1995 Kluwer book "Complex General Relativity" by G. Esposito. In the revised version, 11 References have been adde

    Major air pollutants and risk of COPD exacerbations: a systematic review and meta-analysis

    Get PDF
    published_or_final_versio

    First determination of the strange and light quark masses from full lattice QCD

    Get PDF
    We compute the strange quark mass msm_s and the average of the uu and dd quark masses m^\hat m using full lattice QCD with three dynamical quarks combined with experimental values for the pion and kaon masses. The simulations have degenerate uu and dd quarks with masses mu=md≡m^m_u=m_d\equiv \hat m as low as ms/8m_s/8, and two different values of the lattice spacing. The bare lattice quark masses obtained are converted to the \msbar scheme using perturbation theory at O(alphas)O(alpha_s). Our results are: m_s^\msbar(2 GeV) = 76(0)(3)(7)(0) MeV, \hat m^\msbar(2 GeV) = 2.8(0)(1)(3)(0) MeV and ms/m^m_s/\hat m = 27.4(1)(4)(0)(1), where the errors are from statistics, simulation, perturbation theory, and electromagnetic effects, respectively.Comment: 5 pages, revtex, 2 figures. v2: New ms/hat(m) discussion and reference, v3: slight change in discussion of referenc

    Field Scanner Design for MUSTANG of the Green Bank Telescope

    Full text link
    MUSTANG is a bolometer camera for the Green Bank Telescope (GBT) working at a frequency of 90 GHz. The detector has a field of view of 40 arcseconds. To cancel out random emission change from atmosphere and other sources, requires a fast scanning reflecting system with a few arcminute ranges. In this paper, the aberrations of an off-axis system are reviewed. The condition for an optimized system is provided. In an optimized system, as additional image transfer mirrors are introduced, new aberrations of the off-axis system may be reintroduced, resulting in a limited field of view. In this paper, different scanning mirror arrangements for the GBT system are analyzed through the ray tracing analysis. These include using the subreflector as the scanning mirror, chopping a flat mirror and transferring image with an ellipse mirror, and chopping a flat mirror and transferring image with a pair of face-to-face paraboloid mirrors. The system analysis shows that chopping a flat mirror and using a well aligned pair of paraboloids can generate the required field of view for the MUSTUNG detector system, while other systems all suffer from larger off-axis aberrations added by the system modification. The spot diagrams of the well aligned pair of paraboloids produced is only about one Airy disk size within a scanning angle of about 3 arcmin.Comment: 7 pages, 9 figure
    • 

    corecore