71 research outputs found

    NF-kappa B genes have a major role in Inflammatory Breast Cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>IBC (Inflammatory Breast cancer) is a rare form of breast cancer with a particular phenotype. New molecular targets are needed to improve the treatment of this rapidly fatal disease. Given the role of NF-κB-related genes in cell proliferation, invasiveness, angiogenesis and inflammation, we postulated that they might be deregulated in IBC.</p> <p>Methods</p> <p>We measured the mRNA expression levels of 60 NF-κB-related genes by using real-time quantitative RT-PCR in a well-defined series of 35 IBCs, by comparison with 22 stage IIB and III non inflammatory breast cancers. Twenty-four distant metastases of breast cancer served as "poor prognosis" breast tumor controls.</p> <p>Results</p> <p>Thirty-five (58%) of the 60 NF-κB-related genes were significantly upregulated in IBC compared with non IBC. The upregulated genes were NF-κB genes (<it>NFKB1</it>, <it>RELA</it>, <it>IKBKG</it>, <it>NFKBIB</it>, <it>NFKB2</it>, <it>REL</it>, <it>CHUK</it>), apoptosis genes (<it>MCL1L</it>, <it>TNFAIP3/A20</it>, <it>GADD45B</it>, <it>FASLG</it>, <it>MCL1S</it>, <it>IER3L</it>, <it>TNFRSF10B/TRAILR2</it>), immune response genes (<it>CD40</it>, <it>CD48</it>, <it>TNFSF11/RANKL</it>, <it>TNFRSF11A/RANK</it>, <it>CCL2/MCP-1</it>, <it>CD40LG</it>, <it>IL15</it>, <it>GBP1</it>), proliferation genes (<it>CCND2</it>, <it>CCND3</it>, <it>CSF1R</it>, <it>CSF1</it>, <it>SOD2</it>), tumor-promoting genes (<it>CXCL12</it>, <it>SELE</it>, <it>TNC</it>, <it>VCAM1</it>, <it>ICAM1</it>, <it>PLAU/UPA</it>) or angiogenesis genes (<it>PTGS2/COX2</it>, <it>CXCL1/GRO1</it>). Only two of these 35 genes (<it>PTGS2/COX2 </it>and <it>CXCL1/GRO1</it>)were also upregulated in breast cancer metastases. We identified a five-gene molecular signature that matched patient outcomes, consisting of <it>IL8 </it>and <it>VEGF </it>plus three NF-κB-unrelated genes that we had previously identified as prognostic markers in the same series of IBC.</p> <p>Conclusion</p> <p>The NF-κB pathway appears to play a major role in IBC, possibly contributing to the unusual phenotype and aggressiveness of this form of breast cancer. Some upregulated NF-κB-related genes might serve as novel therapeutic targets in IBC.</p

    Quasi-continuous Interpolation Scheme for Pathways between Distant Configurations

    Get PDF
    A quasi-continuous interpolation (QCI) scheme is introduced for characterizing physically realistic initial pathways from which to initiate transition state searches and construct kinetic transition networks. Applications are presented for peptides, proteins, and a morphological transformation in an atomic cluster. The first step in each case involves end point alignment, and we describe the use of a shortest augmenting path algorithm for optimizing permutational isomers. The QCI procedure then employs an interpolating potential, which preserves the covalent bonding framework for the biomolecules and includes repulsive terms between unconstrained atoms. This potential is used to identify an interpolating path by minimizing contributions from a connected set of images, including terms corresponding to minima in the interatomic distances between them. This procedure detects unphysical geometries in the line segments between images. The most difficult cases, where linear interpolation would involve chain crossings, are treated by growing the structure an atom at a time using the interpolating potential. To test the QCI procedure, we carry through a series of benchmark calculations where the initial interpolation is coupled to explicit transition state searches to produce complete pathways between specified local minima.This work was supported by the Engineering and Physical Sciences Research Council [grant number EP/H042660/1]This document is the unedited Author’s version of a Submitted Work that was subsequently accepted for publication in the Journal of Chemical Theory and Computation, copyright © American Chemical Society after peer review. To access the final edited and published work see http://dx.doi.org/10.1021/ct300483

    Role of free fatty acids in endothelial dysfunction

    Full text link

    Reaction of ependymal cells to spinal cord injury: a potential role for oncostatin pathway and microglial cells

    No full text
    Abstract Ependymal cells with stem cell properties reside in the adult spinal cord around the central canal. They rapidly activate and proliferate after spinal cord injury, constituting a source of new cells. They produce neurons and glial cells in lower vertebrates but they mainly generate glial cells in mammals. The mechanisms underlying their activation and their glial-biased differentiation in mammals remain ill-defined. This represents an obstacle to control these cells. We addressed this issue using RNA profiling of ependymal cells before and after injury. We found that these cells activate STAT3 and ERK/MAPK signaling during injury and downregulate cilia-associated genes and FOXJ1, a central transcription factor in ciliogenesis. Conversely, they upregulate 510 genes, six of them more than 20 fold, namely Crym, Ecm1, Ifi202b, Nupr1, Rbp1, Thbs2 and Osmr . OSMR is the receptor for the inflammatory cytokine oncostatin (OSM) and we studied its regulation and role using neurospheres derived from ependymal cells. We found that OSM induces strong OSMR and p-STAT3 expression together with proliferation reduction and astrocytic differentiation. Conversely, production of oligodendrocyte-lineage OLIG1 + cells was reduced. OSM is specifically expressed by microglial cells and was strongly upregulated after injury. We observed microglial cells apposed to ependymal cells in vivo and co-cultures experiments showed that these cells upregulate OSMR in neurosphere cells. Collectively, these results support the notion that microglial cells and OSMR/OSM pathway regulate ependymal cells in injury. In addition, the generated high throughput data provides a unique molecular resource to study how ependymal cell react to spinal cord lesion

    Spatiotemporal variation of endogenous cell-generated stresses within 3D multicellular spheroids

    Get PDF
    Abstract Multicellular spheroids serve as an excellent platform to study tissue behavior and tumor growth in a controlled, three-dimensional (3D) environment. While molecular and cellular studies have long used this platform to study cell behavior in 3D, only recently have studies using multicellular spheroids shown an important role for the mechanics of the microenvironment in a wide range of cellular processes, including during tumor progression. Despite the well-established relevance of mechanical cues to cell behavior and the numerous studies on mechanics using 2D cell culture systems, the spatial and temporal variations in endogenous cellular forces within growing multicellular aggregates remain unknown. Using cell-sized oil droplets with controlled physicochemical properties as force transducers in mesenchymal cell aggregates, we show that the magnitude of cell-generated stresses varies only weakly with spatial location within the spherical aggregate, but it increases considerably over time during aggregate compaction and growth. Moreover, our results indicate that the temporal increase in cellular stresses is due to increasing cell pulling forces transmitted via integrin-mediated cell adhesion, consistent with the need for larger intercellular pulling forces to compact cell aggregates

    Chronic maternal fluoxetine infusion in pregnant sheep: effects on the maternal and fetal hypothalamic-pituitary-adrenal axes

    No full text
    Depression during pregnancy is frequently treated with the selective serotonin reuptake inhibitor, fluoxetine (FX). FX increases serotonergic neurotransmission and serotonin plays a role in the regulation of the hypothalamic-pituitary-adrenal (HPA) axis. We have therefore investigated the effect of chronic administration of FX to the pregnant ewe on the maternal and fetal HPA axes. Nineteen late-gestation sheep were surgically prepared for chronic study of the fetus. FX (n = 7, 98.5 µg/kg/d) or sterile water (control, n _ 8) was administered to the ewe for 8 d by constant rate i.v. infusion with an initial FX bolus dose of 70 mg. Maternal and fetal plasma ACTH and cortisol concentrations were determined at 0700 h each day. Maternal plasma ACTH concentrations fell on infusion d 2, but no changes were observed in maternal plasma cortisol concentrations. Fetal plasma ACTH concentrations increased on infusion d 7, and fetal plasma cortisol concentrations increased on infusion d 6, 7, and 8 in the FX group. In addition, the regression coefficient for the relationship between fetal ACTH and cortisol levels was significantly greater in the FX group compared with the control group. Thus, maternal FX treatment increased fetal plasma cortisol concentration. These results are of particular interest in the context that exposure of the fetus to excess glucocorticoids at critical windows during development has been shown to increase the risk of poor health outcomes in later life.Janna L. Morrison, K. Wayne Riggs, Caly Chien, Nancy Gruber, I. Caroline McMillen and Dan W. Rura

    Arabidopsis constitutive photomorphogenic mutant, bls1, displays altered brassinosteroid response and sugar sensitivity

    No full text
    Item does not contain fulltextWe have isolated an Arabidopsis mutant impaired in light- and brassinosteroid (BR) induced responses, as well as in sugar signalling. The bls1 (brassinosteroid, light and sugar1) mutant displays short hypocotyl, expanded cotyledons, and de-repression of light- regulated genes in young seedlings, and leaf differentiation and silique formation on prolonged growth in dark. In light, the bls1 mutant is dwarf and develops a short root, compact rosette, with reduced trichome number, and exhibits delayed bolting. The activity of the BR inducible TCH4 and auxin inducible SAUR promoters, fused with GUS gene, is also altered in seedlings harbouring bls1 mutant background. In addition, the bls1 mutant is hypersensitive to metabolizable sugars. The short hypocotyl phenotype in dark, short root phenotype in light and sugar hypersensitivity could be rescued with BR application. Moreover, the bls1 mutant also showed higher expression of a BR biosynthetic pathway gene CPD, which is known to be feedback-regulated by BR. Using a genome-wide AFLP mapping strategy, the bls1 mutant has been mapped to a 1.4 Mb region of chromosome 5. Since no other mutant with essentially a similar phenotype has been assigned to this region, we suggest that the bls1 mutant defines a novel locus involved in regulating endogenous BR levels, with possible rami. cations in integrating light, hormone and sugar signalling
    corecore