22,497 research outputs found

    Lepton Flavor Violating Radiative Decays in EW-Scale νR\nu_R Model: An Update

    Get PDF
    We perform an updated analysis for the one-loop induced lepton flavor violating radiative decays liljγl_i \to l_j \gamma in an extended mirror model. Mixing effects of the neutrinos and charged leptons constructed with a horizontal A4A_4 symmetry are also taken into account. Current experimental limit and projected sensitivity on the branching ratio of μeγ\mu \to e \gamma are used to constrain the parameter space of the model. Calculations of two related observables, the electric and magnetic dipole moments of the leptons, are included. Implications concerning the possible detection of mirror leptons at the LHC and the ILC are also discussed.Comment: 9 figures, 36 single-side pages. Updated email addresses and referenc

    Next-to-Leading Order Corrections to Single Top Quark Production and Decay at the Tevatron: 1. s-channel Process

    Full text link
    We present a study of s-channel single top quark production at the upgraded Tevatron ppˉp\bar{p} collider, including the next-to-leading order (NLO) QCD corrections to the production and the decay of the top quark. The "modified" narrow width approximation was adopted to preserve the spin of the top quark in its production and decay. We discuss the effect of the different O(αs)O(\alpha_s) contributions on the inclusive cross section as well as various kinematic distributions after imposing the relevant cuts to select s-channel single top signal events. In particular the O(αs)O(\alpha_s) decay contribution, while small in size, has a significant impact on several distributions. With the help of the best-jet algorithm to reconstruct the top quark we demonstrate that it is possible to study kinematical and spin correlations in s-channel single top events. We furthermore compare top quark spin measurements in two different basis and show how NLO corrections have to be taken into consideration in searches for the Higgs boson through W±HW^{\pm}H associated production at the Tevatron.Comment: 39 pages, 37 figure

    Investigation on gas-liquid two-phase flow centrifugal pump performances for different rotational speeds

    Get PDF
    International audiencePerformance characteristics of a centrifugal pump under gas-liquid mixture are presented, using a direct coupled single-stage, single-suction centrifugal pump. Both experimental and numerical simulations comparison are carried out, for three different rotational speeds and different inlet gas volume fractions, the results of which are presented, based on dimensionless coefficients from similarity laws. The numerical results show that good agreement is obtained with experimental data at nominal rotational speed for several flow coefficients. It is found that the running of the pump is near the sudden break down of the present pump when the inlet void fraction is below 7%. However, numerical results are less sensitive to rotational speed effects compared with experiment ones; the influence of decreasing rotational speed on pump performances is more and more pronounced when inlet gas void fraction increases and flow coefficient decreases. Froude number effects are taken into account in order to explain part of these differences

    Top Quark Rare Decays via Loop-Induced FCNC Interactions in Extended Mirror Fermion Model

    Full text link
    Flavor changing neutral current (FCNC) interactions for a top quark tt decays into XqXq with XX represents a neutral gauge or Higgs boson, and qq a up- or charm-quark are highly suppressed in the Standard Model (SM) due to the Glashow-Iliopoulos-Miami mechanism. Whilst current limits on the branching ratios of these processes have been established at the order of 10410^{-4} from the Large Hadron Collider experiments, SM predictions are at least nine orders of magnitude below. In this work, we study some of these FCNC processes in the context of an extended mirror fermion model, originally proposed to implement the electroweak scale seesaw mechanism for non-sterile right-handed neutrinos. We show that one can probe the process tZct \to Zc for a wide range of parameter space with branching ratios varying from 10610^{-6} to 10810^{-8}, comparable with various new physics models including the general two Higgs doublet model with or without flavor violations at tree level, minimal supersymmetric standard model with or without RR-parity, and extra dimension model.Comment: 30 pages, 8 figures, 2 tables and 1 appendix. Version to appear in NP

    A Penetration Depth Study on Li2Pd3B and Li2Pt3B

    Full text link
    In this paper we present a penetration depth study on the newly discovered superconductors Li2_2Pd3_3B and Li2_2Pt3_3B. Surprisingly, the low-temperature penetration depth f(T)f(T) demonstrates distinct behavior in these two isostructural compounds. In Li2_2Pd3_3B, f(T)f(T) follows an exponential decay and can be nicely fitted by a two-gap BCS superconducting model with a small gap δ1=3.2\delta_1=3.2K and a large gap δ2=11.5\delta_2=11.5K. However, linear temperature dependence of f(T)f(T) is observed in Li2_2Pt3_3B below 0.3TcT_c, giving evidence of line nodes in the energy gap.Comment: 2 pages, submitted to LT2

    On cost-effective communication network designing

    Full text link
    How to efficiently design a communication network is a paramount task for network designing and engineering. It is, however, not a single objective optimization process as perceived by most previous researches, i.e., to maximize its transmission capacity, but a multi-objective optimization process, with lowering its cost to be another important objective. These two objectives are often contradictive in that optimizing one objective may deteriorate the other. After a deep investigation of the impact that network topology, node capability scheme and routing algorithm as well as their interplays have on the two objectives, this letter presents a systematic approach to achieve a cost-effective design by carefully choosing the three designing aspects. Only when routing algorithm and node capability scheme are elegantly chosen can BA-like scale-free networks have the potential of achieving good tradeoff between the two objectives. Random networks, on the other hand, have the built-in character for a cost-effective design, especially when other aspects cannot be determined beforehand.Comment: 6 pages, 4 figure

    Statistics of X-ray flares of Sagittarius A*: evidence for solar-like self-organized criticality phenomenon

    Get PDF
    X-ray flares have routinely been observed from the supermassive black hole, Sagittarius A^\star (Sgr A^\star), at our Galactic center. The nature of these flares remains largely unclear, despite of many theoretical models. In this paper, we study the statistical properties of the Sgr A^\star X-ray flares, by fitting the count rate (CR) distribution and the structure function (SF) of the light curve with a Markov Chain Monte Carlo (MCMC) method. With the 3 million second \textit{Chandra} observations accumulated in the Sgr A^\star X-ray Visionary Project, we construct the theoretical light curves through Monte Carlo simulations. We find that the 282-8 keV X-ray light curve can be decomposed into a quiescent component with a constant count rate of 6×103 \sim6\times10^{-3}~count s1^{-1} and a flare component with a power-law fluence distribution dN/dEEαEdN/dE\propto E^{-\alpha_{\rm E}} with αE=1.65±0.17\alpha_{\rm E}=1.65\pm0.17. The duration-fluence correlation can also be modelled as a power-law TEαETT\propto E^{\alpha_{\rm ET}} with αET<0.55\alpha_{\rm ET} < 0.55 (95%95\% confidence). These statistical properties are consistent with the theoretical prediction of the self-organized criticality (SOC) system with the spatial dimension S=3S = 3. We suggest that the X-ray flares represent plasmoid ejections driven by magnetic reconnection (similar to solar flares) in the accretion flow onto the black hole.Comment: to appear in Ap

    Single Top Quark Production and Decay at Next-to-leading Order in Hadron Collision

    Full text link
    We present a calculation of the next-to-leading order QCD corrections, with one-scale phase space slicing method, to single top quark production and decay process ppˉ,pptbˉ+Xbνbˉ+Xp\bar{p},pp\to t\bar{b}+X\to b\ell\nu\bar{b}+X at hadron colliders. Using the helicity amplitude method, the angular correlation of the final state partons and the spin correlation of the top quark are preserved. The effect of the top quark width is also examined.Comment: 47 pages, 9 figure

    Radiative and flavor-violating transitions of leptons from interactions with color-octet particles

    Full text link
    It has been recently proposed that neutrino mass could originate from Yukawa interactions of leptons with new colored particles. This raises the interesting possibility of testing mass generation through copious production of those particles at hadron colliders. A realistic assessment of it however should take into account how large those interactions could be from available precision results. In this work we make a systematic analysis to the flavor structure in Yukawa couplings, provide a convenient parametrization to it, and investigate the rare radiative and pure leptonic decays of the muon and tau leptons. For general values of parameters the muon decays set stringent constraints on the couplings, and all rare tau decays are far below the current experimental sensitivity. However, there is room in parameter space in which the muon decays could be significantly suppressed by destructive interference between colored particles without generically reducing the couplings themselves. This is also the region of parameters that is relevant to collider physics. We show that for this part of parameter space some tau decays can reach or are close to the current level of precision.Comment: 20 pages, 7 figure
    corecore