17,821 research outputs found

    Francesco and MAD

    Get PDF
    A new version of the accelerator design code, MAD, was developed by Francesco Ruggiero in 1996. It can provide the function of automatically searching for the dynamic aperture of a synchrotron. With this MAD, we optimized the dynamic aperture of the upgrade project of Beijing Electron Positron Collider (BEPCII) at its R&D stage

    Experimental and numerical investigation of Helmholtz resonators and perforated liners as attenuation devices in industrial gas turbine combustors

    Get PDF
    This paper reports upon developments in the simulation of the passive control of combustion dynamics in industrial gas turbines using acoustic attenuation devices such as Helmholtz resonators and perforated liners. Combustion instability in gas turbine combustors may, if uncontrolled, lead to large-amplitude pressure fluctuations, with consequent serious mechanical problems in the gas turbine combustor system. Perforated combustor walls and Helmholtz resonators are two commonly used passive instability control devices. However, experimental design of the noise attenuation device is time-consuming and calls for expensive trial and error practice. Despite significant advances over recent decades, the ability of Computational Fluid Dynamics to predict the attenuation of pressure fluctuations by these instability control devices is still not well validated. In this paper, the attenuation of pressure fluctuations by a group of multi-perforated panel absorbers and Helmholtz resonators are investigated both by experiment and computational simulation. It is demonstrated that CFD can predict the noise attenuation from Helmholtz resonators with good accuracy. A porous material model is modified to represent a multi-perforated panel and this perforated wall representation approach is demonstrated to be able to accurately predict the pressure fluctuation attenuation effect of perforated panels. This work demonstrates the applicability of CFD in gas turbine combustion instability control device design

    Gluon saturation and pseudo-rapidity distributions of charged hadrons at RHIC energy regions

    Full text link
    We modified the gluon saturation model by rescaling the momentum fraction according to saturation momentum and introduced the Cooper-Frye hydrodynamic evolution to systematically study the pseudo-rapidity distributions of final charged hadrons at different energies and different centralities for Au-Au collisions in relativistic heavy-ion collisions at BNL Relativistic Heavy Ion Collider (RHIC). The features of both gluon saturation and hydrodynamic evolution at different energies and different centralities for Au-Au collisions are investigated in this paper.Comment: 14 pages, 4 figure

    MEMS-plunger platform for tunable terahertz wire laser at 5

    Get PDF
    Abstract The tuning of a terahertz quantum cascade wire laser, operated at ∌5 K, is demonstrated using a micro-machined metal or silicon object, called a 'plunger', attached to a MEMS-based two-stage flexure and actuated by a differential micrometer through a piezo-actuator that is de-amplified by a lever system. The heterogeneous system including the plunger, made from a silicon-on-insulator wafer, and a wire laser based on GaAs/AlGaAs material with first-order distributed feedback corrugation, works at liquid helium temperature (∌5 K). The double-stage flexure design enables a frictionless, reversible and continuous tuning over a broad range of ∌330 GHz (∌8.6% of the 3.85 THz center frequency) with single-mode operation

    Simulation Study on ECI for BEPC and BEPCII

    Get PDF

    Sudden stoppage of rotor in a thermally driven rotary motor made from double-walled carbon nanotubes

    Get PDF
    In a thermally driven rotary motor made from double-walled carbon nanotubes, the rotor (inner tube) can be actuated to rotate within the stator (outer tube) when the environmental temperature is high enough. A sudden stoppage of the rotor can occur when the inner tube has been actuated to rotate at a stable high speed. To find the mechanisms of such sudden stoppages, eight motor models with the same rotor but different stators are built and simulated in the canonical NVT ensembles. Numerical results demonstrate that the sudden stoppage of the rotor occurs when the difference between radii is near 0.34 nm at a high environmental temperature. A smaller difference between radii does not imply easier activation of the sudden rotor stoppage. During rotation, the positions and electron density distribution of atoms at the ends of the motor show that a sp(1) bonded atom on the rotor is attracted by the sp(1) atom with the biggest deviation of radial position on the stator, after which they become two sp(2) atoms. The strong bond interaction between the two atoms leads to the loss of rotational speed of the rotor within 1 ps. Hence, the sudden stoppage is attributed to two factors: the deviation of radial position of atoms at the stator's ends and the drastic thermal vibration of atoms on the rotor in rotation. For a stable motor, sudden stoppage could be avoided by reducing deviation of the radial position of atoms at the stator's ends. A nanobrake can be, thus, achieved by adjusting a sp(1) atom at the ends of stator to stop the rotation of rotor quickly.The authors are grateful for financial support from the National Natural-Science-Foundation of China (Grant Nos. 50908190, 11372100)
    • 

    corecore