2,021 research outputs found

    Low temperature plasma-catalytic NOx synthesis in a packed DBD reactor: effect of support materials and supported active metal oxides

    Get PDF
    The direct synthesis of NOx from N2 and O2 by non-thermal plasma at an atmospheric pressure and low temperature is presented, which is considered to be an attractive option for replacement of the Haber-Bosch process. In this study, the direct synthesis of NOx was studied by packing different catalyst support materials in a dielectric barrier discharge (DBD) reactor. The support materials and their particle sizes both had a significant effect on the concentration of NOx. This is attributed to different surface areas, relative dielectric constants and particles shapes. The nitrogen could be fixed at substantially lowered temperatures by employing non-thermal plasma-catalytic DBD reactor, which can be used as an alternative technology for low temperature synthesis. The γ-Al2O3 with smallest particles size of 250–160 μm, gave the highest concentration of NOx and the lowest specific energy consumption of all the tested materials and particle sizes. The NOx concentration of 5700 ppm was reached at the highest residence time of 0.4 s and an N2/O2 feed ratio of 1 was found to be the most optimum for NOx production. In order to intensify the NOx production in plasma, a series of metal oxide catalysts supported on γ-Al2O3 were tested in a packed DBD reactor. A 5% WO3/γ-Al2O3 catalyst increased the NOx concentration further by about 10% compared to γ-Al2O3, while oxidation catalysts such as Co3O4 and PbO provided a minor (∼5%) improvement. These data suggest that oxygen activation plays a minor role in plasma catalytic nitrogen fixation under the studied conditions with the main role ascribed to the generation of microdischarges on sharp edges of large-surface area plasma catalysts. However, when the loading of active metal oxides was increased to 10%, NO selectivity decreased, suggesting possibility of thermal oxidation of NO to NO2 through reaction with surface oxygen species

    STELLAR: A LARGE SATELLITE STEREO DATASET FOR DIGITAL SURFACE MODEL GENERATION

    Get PDF
    Stellar is a large, satellite stereo dataset. It contains rectified stereo pairs of the terrain captured by the satellite image sensors and corresponding true disparity maps and semantic segmentation. Unlike stereo vision in autonomous driving and mobile imaging, a satellite stereo pair is not captured simultaneously. Thus, the same object in a satellite stereo pair is more likely to have a varied visual appearance. Stellar provides flexible access to such stereo pairs to train methods to be robust to such appearance variation. We use publicly available data sources, and invented several techniques to perform data registration, rectification, and semantic segmentation on the data to build Stellar. In our preliminary experiment, we fine-tuned two deep-learning stereo methods on Stellar. The result demonstrates that most of the time, these methods generate denser and more accurate disparity maps for satellite stereo by fine-tuning on Stellar, compared to without fine-tuning on satellite stereo datasets, or fine-tuning on previous, smaller satellite stereo datasets. Stellar is available to download at https://github.com/guo-research-group/Stellar

    Sequencing the USDA core soybean collection reveals gene loss during domestication and breeding

    Get PDF
    The gene content of plants varies between individuals of the same species due to gene presence/absence variation, and selection can alter the frequency of specific genes in a population. Selection during domestication and breeding will modify the genomic landscape, though the nature of these modifications is only understood for specific genes or on a more general level (e.g., by a loss of genetic diversity). Here we have assembled and analyzed a soybean (Glycine spp.) pangenome representing more than 1,000 soybean accessions derived from the USDA Soybean Germplasm Collection, including both wild and cultivated lineages, to assess genomewide changes in gene and allele frequency during domestication and breeding. We identified 3,765 genes that are absent from the Lee reference genome assembly and assessed the presence/absence of all genes across this population. In addition to a loss of genetic diversity, we found a significant reduction in the average number of protein-coding genes per individual during domestication and subsequent breeding, though with some genes and allelic variants increasing in frequency associated with selection for agronomic traits. This analysis provides a genomic perspective of domestication and breeding in this important oilseed crop

    The impact of porous media heterogeneity on non-Darcy flow behaviour from pore-scale simulation

    Get PDF
    The effect of pore-scale heterogeneity on non-Darcy flow behaviour is investigated by means of direct flow simulations on 3-D images of a beadpack, Bentheimer sandstone and Estaillades carbonate. The critical Reynolds number indicating the cessation of the creeping Darcy flow regime in Estaillades carbonate is two orders of magnitude smaller than in Bentheimer sandstone, and is three orders of magnitude smaller than in the beadpack. It is inferred from the examination of flow field features that the emergence of steady eddies in pore space of Estaillades at elevated fluid velocities accounts for the early transition away from the Darcy flow regime. The non-Darcy coefficient β, the onset of non-Darcy flow, and the Darcy permeability for all samples are obtained and compared to available experimental data demonstrating the predictive capability of our approach. X-ray imaging along with direct pore-scale simulation of flow provides a viable alternative to experiments and empirical correlations for predicting non-Darcy flow parameters such as the β factor, and the onset of non-Darcy flow

    Blueprint for a Scalable Photonic Fault-Tolerant Quantum Computer

    Full text link
    Photonics is the platform of choice to build a modular, easy-to-network quantum computer operating at room temperature. However, no concrete architecture has been presented so far that exploits both the advantages of qubits encoded into states of light and the modern tools for their generation. Here we propose such a design for a scalable and fault-tolerant photonic quantum computer informed by the latest developments in theory and technology. Central to our architecture is the generation and manipulation of three-dimensional hybrid resource states comprising both bosonic qubits and squeezed vacuum states. The proposal enables exploiting state-of-the-art procedures for the non-deterministic generation of bosonic qubits combined with the strengths of continuous-variable quantum computation, namely the implementation of Clifford gates using easy-to-generate squeezed states. Moreover, the architecture is based on two-dimensional integrated photonic chips used to produce a qubit cluster state in one temporal and two spatial dimensions. By reducing the experimental challenges as compared to existing architectures and by enabling room-temperature quantum computation, our design opens the door to scalable fabrication and operation, which may allow photonics to leap-frog other platforms on the path to a quantum computer with millions of qubits.Comment: 38 pages, many figures. Comments welcom

    A Terminal Velocity on the Landscape: Particle Production near Extra Species Loci in Higher Dimensions

    Full text link
    We investigate particle production near extra species loci (ESL) in a higher dimensional field space and derive a speed limit in moduli space at weak coupling. This terminal velocity is set by the characteristic ESL-separation and the coupling of the extra degrees of freedom to the moduli, but it is independent of the moduli's potential if the dimensionality of the field space is considerably larger than the dimensionality of the loci, D >> d. Once the terminal velocity is approached, particles are produced at a plethora of nearby ESLs, preventing a further increase in speed via their backreaction. It is possible to drive inflation at the terminal velocity, providing a generalization of trapped inflation with attractive features: we find that more than sixty e-folds of inflation for sub-Planckian excursions in field space are possible if ESLs are ubiquitous, without fine tuning of initial conditions and less tuned potentials. We construct a simple, observationally viable model with a slightly red scalar power-spectrum and suppressed gravitational waves; we comment on the presence of additional observational signatures originating from IR-cascading and individual massive particles. We also show that moduli-trapping at an ESL is suppressed for D >> d, hindering dynamical selection of high-symmetry vacua on the landscape based on this mechanism.Comment: 46 pages, 6 figures. V3: typos corrected compared to JHEP version, conclusions unchange

    White rice consumption and risk of esophageal cancer in Xinjiang Uyghur Autonomous Region, northwest China: a case-control study

    Get PDF
    This study investigated the association between white rice consumption and the risk of esophageal cancer in remote northwest China, where the cancer incidence is known to be high. A case-control study was conducted during 2008-2009 in Urumqi and Shihezi, Xinjiang Uyghur Autonomous Region of China. Participants were 359 incident esophageal cancer patients and 380 hospital-based controls. Information on habitual white rice consumption was obtained by personal interview using a validated semi-quantitative food frequency questionnaire. Logistic regression analyses were performed to assess the association between white rice consumption and the esophageal cancer risk. Confounding variables including socio-demographics, family history, dietary and lifestyle factors were adjusted in the multivariate model. The esophageal cancer patients reported lower consumption levels of white rice-based products, including cooked white rice and porridge, when compared to the control group. Overall, regular consumption of white rice foods was inversely associated with the esophageal cancer risk, the adjusted OR being 0.34 (95 % CI 0.23 to 0.52) for the highest (>250 g) versus the lowest (<92 g) tertile of daily intake. Similar reductions in risk were also apparent for high consumption levels of cooked white rice and porridge. In conclusion, habitual white rice consumption was associated with a reduced risk of esophageal cancer for adults residing in northwest China. Our findings provide evidence to support the continued consumption of white rice

    Filtering out the cosmological constant in the Palatini formalism of modified gravity

    Full text link
    According to theoretical physics the cosmological constant (CC) is expected to be much larger in magnitude than other energy densities in the universe, which is in stark contrast to the observed Big Bang evolution. We address this old CC problem not by introducing an extremely fine-tuned counterterm, but in the context of modified gravity in the Palatini formalism. In our model the large CC term is filtered out, and it does not prevent a standard cosmological evolution. We discuss the filter effect in the epochs of radiation and matter domination as well as in the asymptotic de Sitter future. The final expansion rate can be much lower than inferred from the large CC without using a fine-tuned counterterm. Finally, we show that the CC filter works also in the Kottler (Schwarzschild-de Sitter) metric describing a black hole environment with a CC compatible to the future de Sitter cosmos.Comment: 22 pages, 1 figure, discussion extended, references added, accepted by Gen.Rel.Gra

    Specialized dynamical properties of promiscuous residues revealed by simulated conformational ensembles

    Get PDF
    The ability to interact with different partners is one of the most important features in proteins. Proteins that bind a large number of partners (hubs) have been often associated with intrinsic disorder. However, many examples exist of hubs with an ordered structure, and evidence of a general mechanism promoting promiscuity in ordered proteins is still elusive. An intriguing hypothesis is that promiscuous binding sites have specific dynamical properties, distinct from the rest of the interface and pre-existing in the protein isolated state. Here, we present the first comprehensive study of the intrinsic dynamics of promiscuous residues in a large protein data set. Different computational methods, from coarse-grained elastic models to geometry-based sampling methods and to full-atom Molecular Dynamics simulations, were used to generate conformational ensembles for the isolated proteins. The flexibility and dynamic correlations of interface residues with a different degree of binding promiscuity were calculated and compared considering side chain and backbone motions, the latter both on a local and on a global scale. The study revealed that (a) promiscuous residues tend to be more flexible than nonpromiscuous ones, (b) this additional flexibility has a higher degree of organization, and (c) evolutionary conservation and binding promiscuity have opposite effects on intrinsic dynamics. Findings on simulated ensembles were also validated on ensembles of experimental structures extracted from the Protein Data Bank (PDB). Additionally, the low occurrence of single nucleotide polymorphisms observed for promiscuous residues indicated a tendency to preserve binding diversity at these positions. A case study on two ubiquitin-like proteins exemplifies how binding promiscuity in evolutionary related proteins can be modulated by the fine-tuning of the interface dynamics. The interplay between promiscuity and flexibility highlighted here can inspire new directions in protein-protein interaction prediction and design methods. © 2013 American Chemical Society

    Plasma assisted nitrogen oxide production from air: Using pulsed powered gliding arc reactor for a containerized plant

    Get PDF
    The production of NOx from air and air + O2 is investigated in a pulsed powered milli-scale gliding arc (GA) reactor, aiming at a containerized process for fertilizer production. Influence of feed mixture, flow rate, temperature, and Ar and O2 content are investigated at varying specific energy input. The findings are correlated with high-speed imaging of the GA dynamics. An O2 content of 40–48% was optimum, with an enhancement of 11% in NOx production. Addition of Ar and preheating of the feed resulted in lower NOx production. Lower flow rates produced higher NOx concentrations due to longer residence time in the GA. The volume covered by GA depends strongly on the gas flow rate, emphasizing that the gas flow rate has a major impact on the GA dynamics and the reaction kinetics. For 0.5 L/min, 1.4 vol % of NOx concentration was realized, which is promising for a containerized process plant to produce fertilizer in remote locations. © 2017 American Institute of Chemical Engineers AIChE J</p
    corecore