20,378 research outputs found

    The Behaviour of Finely Ground Bottom Ash in Portland Cement

    No full text
    The aim of this project was to assess the effects of finely ground MSWI bottom ash in Portland cement. Mortar mixes were prepared with 10% and 40% replacement of cement by ground IBA and then tested with regards to their material composition and engineering behaviour. IBA was found not to be inert, but showed some degree of reactivity. Replacement of cement with IBA was found to have no detrimental effects at low concentrations. This was not the case for 40% replacement, where cement replacement greatly affected strength, creep and drying shrinkage

    Anecdotes to the life and times of Sir Richard Owen (1804-1892) in Lancaster

    Get PDF
    Sir Richard Owen, a Lancastrian, was a prominent biologist, comparative anatomist, geologist, palaeontologist and known for coining the term dinosaur. His expertise in anatomical dissection proved to be one of his biggest assets and aided his career progression at the Royal College of Surgeons and the Zoological Society. Owen's apprenticeship in Lancaster helped him to gain expertise in anatomy and anatomical dissection. The authors aim to provide some novel contextual background to his childhood in Lancaster, his affection for his hometown and his contribution to Lancaster's sanitary reform. The latter aspect of his scientific accomplishments is typically overlooked

    The Effect of Co-Combusted Biomass-Coal Fly Ash on the Behaviour Portland Cement

    No full text
    This project has investigated the hydration behaviour of pfa-OPC blended cements, comparing conventional pfa with that obtained from co-firing of coal with biomass (palm kernel expeller). Calorimetry, thermal analysis and electron microscopy have been used to investigate the compositions and microstructures of the hydrated pastes. These have been used to explain the materials’ engineering properties (strength development and workability). The results showed that, in the short term, the behaviour of the co-fired material is comparable with that of conventional pfa, there being no discernable differences between the two systems

    Polaronic transport induced by competing interfacial magnetic order in a La0.7_{0.7}Ca0.3_{0.3}MnO3_{3}/BiFeO3_{3} heterostructure

    Full text link
    Using ultrafast optical spectroscopy, we show that polaronic behavior associated with interfacial antiferromagnetic order is likely the origin of tunable magnetotransport upon switching the ferroelectric polarity in a La0.7_{0.7}Ca0.3_{0.3}MnO3_{3}/BiFeO3_{3} (LCMO/BFO) heterostructure. This is revealed through the difference in dynamic spectral weight transfer between LCMO and LCMO/BFO at low temperatures, which indicates that transport in LCMO/BFO is polaronic in nature. This polaronic feature in LCMO/BFO decreases in relatively high magnetic fields due to the increased spin alignment, while no discernible change is found in the LCMO film at low temperatures. These results thus shed new light on the intrinsic mechanisms governing magnetoelectric coupling in this heterostructure, potentially offering a new route to enhancing multiferroic functionality

    Generalized Haldane Equation and Fluctuation Theorem in the Steady State Cycle Kinetics of Single Enzymes

    Full text link
    Enyzme kinetics are cyclic. We study a Markov renewal process model of single-enzyme turnover in nonequilibrium steady-state (NESS) with sustained concentrations for substrates and products. We show that the forward and backward cycle times have idential non-exponential distributions: \QQ_+(t)=\QQ_-(t). This equation generalizes the Haldane relation in reversible enzyme kinetics. In terms of the probabilities for the forward (p+p_+) and backward (pp_-) cycles, kBTln(p+/p)k_BT\ln(p_+/p_-) is shown to be the chemical driving force of the NESS, Δμ\Delta\mu. More interestingly, the moment generating function of the stochastic number of substrate cycle ν(t)\nu(t), follows the fluctuation theorem in the form of Kurchan-Lebowitz-Spohn-type symmetry. When $\lambda$ = $\Delta\mu/k_BT$, we obtain the Jarzynski-Hatano-Sasa-type equality: \equiv 1 for all tt, where νΔμ\nu\Delta\mu is the fluctuating chemical work done for sustaining the NESS. This theory suggests possible methods to experimentally determine the nonequilibrium driving force {\it in situ} from turnover data via single-molecule enzymology.Comment: 4 pages, 3 figure

    Three-dimensional magnetic flux rope structure formed by multiple sequential X-line reconnection at the magnetopause

    No full text
    On 14 June 2007, four Time History of Events and Macroscale Interactions during Substorms spacecraft observed a flux transfer event (FTE) on the dayside magnetopause, which has been previously proved to be generated by multiple, sequential X-line reconnection (MSXR) in a 2-D context. This paper reports a further study of the MSXR event to show the 3-D viewpoint based on additional measurements. The 3-D structure of the FTE flux rope across the magnetospheric boundary is obtained on the basis of multipoint measurements taken on both sides of the magnetopause. The flux rope's azimuthally extended section is found to lie approximately on the magnetopause surface and parallel to the X-line direction; while the axis of the magnetospheric branch is essentially along the local unperturbed magnetospheric field lines. In the central region of the flux rope, as distinct from the traditional viewpoint, we find from the electron distributions that two types of magnetic field topology coexist: opened magnetic field lines connecting the magnetosphere and the magnetosheath and closed field lines connecting the Southern and Northern hemispheres. We confirm, therefore, for the first time, the characteristic feature of the 3-D reconnected magnetic flux rope, formed through MSXR, through a determination of the field topology and the plasma distributions within the flux rope. Knowledge of the complex geometry of FTE flux ropes will improve our understanding of solar wind-magnetosphere interaction.Astronomy & AstrophysicsSCI(E)5ARTICLE51904-191111
    corecore