2,044 research outputs found

    Causal Strategic Learning with Competitive Selection

    Full text link
    We study the problem of agent selection in causal strategic learning under multiple decision makers and address two key challenges that come with it. Firstly, while much of prior work focuses on studying a fixed pool of agents that remains static regardless of their evaluations, we consider the impact of selection procedure by which agents are not only evaluated, but also selected. When each decision maker unilaterally selects agents by maximising their own utility, we show that the optimal selection rule is a trade-off between selecting the best agents and providing incentives to maximise the agents' improvement. Furthermore, this optimal selection rule relies on incorrect predictions of agents' outcomes. Hence, we study the conditions under which a decision maker's optimal selection rule will not lead to deterioration of agents' outcome nor cause unjust reduction in agents' selection chance. To that end, we provide an analytical form of the optimal selection rule and a mechanism to retrieve the causal parameters from observational data, under certain assumptions on agents' behaviour. Secondly, when there are multiple decision makers, the interference between selection rules introduces another source of biases in estimating the underlying causal parameters. To address this problem, we provide a cooperative protocol which all decision makers must collectively adopt to recover the true causal parameters. Lastly, we complement our theoretical results with simulation studies. Our results highlight not only the importance of causal modeling as a strategy to mitigate the effect of gaming, as suggested by previous work, but also the need of a benevolent regulator to enable it.Comment: Corrected some in-text citation

    Methane emission factors from vietnamese rice production: Pooling data of 36 field sites for meta-analysis

    Get PDF
    Rice production is a significant source of greenhouse gas (GHG) emissions in the national budget of many Asian countries, but the extent of emissions varies strongly across agro-environmental zones. It is important to understand these differences in order to improve the national GHG inventory and effectively target mitigation options. This study presents a meta-analysis of CH4 database emission factors (EFs) from 36 field sites across the rice growing areas of Vietnam and covering 73 cropping seasons. The EFs were developed from field measurements using the closed chamber technique. The analysis for calculating baseline EFs in North, Central and South Vietnam in line with the Intergovernmental Panel on Climate Change (IPCC) Tier 2 methodology was specified for the three cropping seasons being early-(E), mid-(M) and late-year (L) seasons. Calculated average CH4_{4} EFs are given in kg ha−1^{-1} d−1^{-1} and reflect the distinct seasons in North (E: 2.21; L: 3.89), Central (E: 2.84; M+L: 3.13) and South Vietnam (E: 1.72; M: 2.80; L: 3.58). Derived from the available data of the edapho-hydrological zones of the Mekong River Delta, season-based EFs are more useful than zone-based EFs. In totality, these average EFs indicate an enormous variability of GHG emissions in Vietnamese rice production and represent much higher values than the IPCC default. Seasonal EFs from Vietnam exceeded IPCC defaults given for Southeast Asia corresponding to 160% (E), 240% (M) and 290% (L) of the medium value, respectively

    A new photon recoil experiment: towards a determination of the fine structure constant

    Get PDF
    We report on progress towards a measurement of the fine structure constant to an accuracy of 5×10−105\times 10^{-10} or better by measuring the ratio of the Planck constant to the mass of the cesium atom. Compared to similar experiments, ours is improved in three significant ways: (i) simultaneous conjugate interferometers, (ii) multi-photon Bragg diffraction between same internal states, and (iii) an about 1000 fold reduction of laser phase noise to -138 dBc/Hz. Combining that with a new method to simultaneously stabilize the phases of four frequencies, we achieve 0.2 mrad effective phase noise at the location of the atoms. In addition, we use active stabilization to suppress systematic effects due to beam misalignment.Comment: 12 pages, 9 figure

    Features of trastuzumab-related cardiac dysfunction: deformation analysis outside left ventricular global longitudinal strain

    Get PDF
    BackgroundCancer therapy-related cardiac dysfunction due to trastuzumab has been well-known for many years, and echocardiographic surveillance is recommended every 3 months in patients undergoing trastuzumab treatment, irrespective of the baseline cardiotoxicity risk. However, the potential harm and cost of overscreening in low- and moderate-risk patients have become great concerns.ObjectivesThis study aimed to identify the incidence of early cancer therapy-related cardiac dysfunction (CTRCD) and the behaviours of left and right heart deformations during trastuzumab chemotherapy in low- and moderate-risk patients.MethodsWe prospectively enrolled 110 anthracycline-naïve women with breast cancer and cardiovascular risk factors who were scheduled to receive trastuzumab. The left ventricular ejection fraction (LVEF), left ventricular global longitudinal strain (LV-GLS), and right ventricular and left atrial longitudinal strains were evaluated using echocardiography at baseline, before every subsequent cycle and 3 weeks after the final dose of trastuzumab. The baseline risk of CTRCD was graded according to the risk score proposed by the Heart Failure Association (HFA) Cardio-Oncology Working Group and the International Cardio-Oncology Society (ICOS). CTRCD and its severity were defined according to the current European Society of Cardiology (ESC) guidelines.ResultsTwelve (10.9%) patients had asymptomatic CTRCD. All CTRCD occurred sporadically during the first 9 months of the active trastuzumab regimen in both low- and moderate-risk patients. While CTRCD was graded as moderate severity in 41.7% of patients and heart failure therapy was initiated promptly, no irreversible cardiotoxicity or trastuzumab interruption was recorded at the end of follow-up. Among the left and right heart deformation indices, only LV-GLS decreased significantly in the CTRCD group during the trastuzumab regimen.ConclusionsCTRCD is prevalent in patients with non-high-risk breast cancer undergoing trastuzumab chemotherapy. Low- and moderate-risk patients show distinct responses to trastuzumab. The LV-GLS is the only deformation index sensitive to early trastuzumab-related cardiac dysfunction

    Measurement of the main and critical parameters for optimal laser treatment of heart disease

    Get PDF
    Abstract: Laser light is frequently used in the diagnosis and treatment of patients. As in traditional treatments such as medication, bypass surgery, and minimally invasive ways, laser treatment can also fail and present serious side effects. The true reason for laser treatment failure or the side effects thereof, remains unknown. From the literature review conducted, and experimental results generated we conclude that an optimal laser treatment for coronary artery disease (named heart disease) can be obtained if certain critical parameters are correctly measured and understood. These parameters include the laser power, the laser beam profile, the fluence rate, the treatment time, as well as the absorption and scattering coefficients of the target treatment tissue. Therefore, this paper proposes different, accurate methods for the measurement of these critical parameters to determine the optimal laser treatment of heart disease with a minimal risk of side effects. The results from the measurement of absorption and scattering properties can be used in a computer simulation package to predict the fluence rate. The computing technique is a program based on the random number (Monte Carlo) process and probability statistics to track the propagation of photons through a biological tissue

    A CLK3-HMGA2 Alternative Splicing Axis Impacts Human Hematopoietic Stem Cell Molecular Identity throughout Development

    Get PDF
    While gene expression dynamics have been extensively cataloged during hematopoietic differentiation in the adult, less is known about transcriptome diversity of human hematopoietic stem cells (HSCs) during development. To characterize transcriptional and post-transcriptional changes in HSCs during development, we leveraged high-throughput genomic approaches to profile miRNAs, lincRNAs, and mRNAs. Our findings indicate that HSCs manifest distinct alternative splicing patterns in key hematopoietic regulators. Detailed analysis of the splicing dynamics and function of one such regulator, HMGA2, identified an alternative isoform that escapes miRNA-mediated targeting. We further identified the splicing kinase CLK3 that, by regulating HMGA2 splicing, preserves HMGA2 function in the setting of an increase in let-7 miRNA levels, delineating how CLK3 and HMGA2 form a functional axis that influences HSC properties during development. Collectively, our study highlights molecular mechanisms by which alternative splicing and miRNA-mediated post-transcriptional regulation impact the molecular identity and stage-specific developmental features of human HSCs. Human hematopoietic stem cells (HSCs) display substantial transcriptional diversity during development. Here, we investigated the contribution of alternative splicing to such diversity by analyzing the dynamics of a key hematopoietic regulator, HMGA2. Next, we showed that CLK3, by regulating the splicing pattern of HMGA2, reinforces an HSC-specific program

    Segmentation of diagnostic tissue compartments on whole slide images with renal thrombotic microangiopathies (TMAs)

    Full text link
    The thrombotic microangiopathies (TMAs) manifest in renal biopsy histology with a broad spectrum of acute and chronic findings. Precise diagnostic criteria for a renal biopsy diagnosis of TMA are missing. As a first step towards a machine learning- and computer vision-based analysis of wholes slide images from renal biopsies, we trained a segmentation model for the decisive diagnostic kidney tissue compartments artery, arteriole, glomerulus on a set of whole slide images from renal biopsies with TMAs and Mimickers (distinct diseases with a similar nephropathological appearance as TMA like severe benign nephrosclerosis, various vasculitides, Bevacizumab-plug glomerulopathy, arteriolar light chain deposition disease). Our segmentation model combines a U-Net-based tissue detection with a Shifted windows-transformer architecture to reach excellent segmentation results for even the most severely altered glomeruli, arterioles and arteries, even on unseen staining domains from a different nephropathology lab. With accurate automatic segmentation of the decisive renal biopsy compartments in human renal vasculopathies, we have laid the foundation for large-scale compartment-specific machine learning and computer vision analysis of renal biopsy repositories with TMAs.Comment: 12 pages, 3 figure

    Drug discovery for Diamond-Blackfan anemia using reprogrammed hematopoietic progenitors

    Get PDF
    Diamond-Blackfan anemia (DBA) is a congenital disorder characterized by the failure of erythroid progenitor differentiation, severely curtailing red blood cell production. Because many DBA patients fail to respond to corticosteroid therapy, there is considerable need for therapeutics for this disorder. Identifying therapeutics for DBA requires circumventing the paucity of primary patient blood stem and progenitor cells. To this end, we adopted a reprogramming strategy to generate expandable hematopoietic progenitor cells from induced pluripotent stem cells (iPSCs) from DBA patients. Reprogrammed DBA progenitors recapitulate defects in erythroid differentiation, which were rescued by gene complementation. Unbiased chemical screens identified SMER28, a small-molecule inducer of autophagy, which enhanced erythropoiesis in a range of in vitro and in vivo models of DBA. SMER28 acted through autophagy factor ATG5 to stimulate erythropoiesis and up-regulate expression of globin genes. These findings present an unbiased drug screen for hematological disease using iPSCs and identify autophagy as a therapeutic pathway in DBA.National Institute of Diabetes and Digestive and Kidney Diseases (U.S.) (Grant R24-DK092760)National Institute of Diabetes and Digestive and Kidney Diseases (U.S.) (Grant R24-DK49216)National Institute of Diabetes and Digestive and Kidney Diseases (U.S.) (Grant U54DK110805)National Heart, Lung, and Blood Institute (Grant UO1-HL100001)National Heart, Lung, and Blood Institute (Grant U01HL134812)National Heart, Lung, and Blood Institute (Grant R01HL04880)National Institutes of Health (U.S.) (Grant R24OD017870-01
    • …
    corecore