26,645 research outputs found

    Indirect exchange of magnetic impurities in zigzag graphene ribbon

    Full text link
    We use quantum Monte Carlo method to study the indirect coupling between two magnetic impurities on the zigzag edge of graphene ribbon, with respect to the chemical potential μ\mu. We find that the spin-spin correlation between two adatoms located on the nearest sites in the zigzag edge are drastically suppressed around the zero-energy. As we switch the system away from half-filling, the antiferromagnetic correlation is first enhanced and then decreased. If the two adatoms are adsorbed on the sites belonging to the same sublattice, we find similar behavior of spin-spin correlation except for a crossover from ferromagnetic to antiferromagentic correlation in the vicinity of zero-energy. We also calculated the weight of different components of d-electron wave function and local magnet moment for various values of parameters, and all the results are consistent with those of spin-spin correlation between two magnetic impurities.Comment: 3 pages, 4 figures, conference proceedin

    Granular YBaCuO films prepared by metalorganic chemical aerosol deposition technology

    Get PDF
    Fine-grain thin superconducting films can be prepared by metalorganic Chemical Aerosol Deposition Technology (CADT). In this paper, we present the preparation and properties of YBa2Cu3O7-x films on the different substrates, Si and SrTiO3 (100). It is shown that the zero-resistance temperature (Tc,0) of the films on SrTiO3 substrates is about 90 K, and the critical current density (Jc) at 77 K is above 104 A/cm2. In addition, these films exhibit significant grain-boundary weak link behaviour, which is very promising for applications in electronic devices

    Enhanced Photocatalytic Properties of PET Filaments Coated with Ag-N Co-Doped TiO2 Nanoparticles Sensitized with Disperse Blue Dyes

    Get PDF
    In this study, the effects of disperse blue dye-sensitization on the photocatalytic properties of the Ag-N co-doped TiO2 nanoparticles loaded on polyethylene terephthalate (PET) filaments are investigated under visible light irradiation. The microstructure and photocatalytic properties of the as-synthesized TiO2 nanocomposites, as well as the as-prepared PET filaments, are systematically characterized. The photocatalytic performance of the PET filaments coated with the Ag-N co-doped TiO2 nanoparticles sensitized with disperse blue dyes is evaluated via its capacity of photo-degrading methyl orange (MO) dyes under visible light irradiation. It is found that the holes are the predominant reactive radical species and the hydroxyl and superoxide radicals play a subordinate role in the photocatalytic reaction process. The reaction rate constant of the photocatalytic composite filaments is nearly 4.0 times higher than that of the PET filaments loaded solely with TiO2 nanoparticles. The resultant photocatalytic composite filaments are evident to be capable of repeatedly photo-degrading MO dyes without losing its photocatalytic activity significantly

    On the Nature of X(4260)

    Full text link
    We study the property of X(4260)X(4260) resonance by re-analyzing all experimental data available, especially the e+eJ/ψπ+π,ωχc0e^+e^- \rightarrow J/\psi\,\pi^+\pi^-,\,\,\,\omega\chi_{c0} cross section data. The final state interactions of the ππ\pi\pi, KKˉK\bar K couple channel system are also taken into account. A sizable coupling between the X(4260)X(4260) and ωχc0\omega\chi_{c0} is found. The inclusion of the ωχc0\omega\chi_{c0} data indicates a small value of Γe+e=23.30±3.55\Gamma_{e^+e^-}=23.30\pm 3.55eV.Comment: Refined analysis with new experimental data included. 13 page

    Conduction mechanisms of epitaxial EuTiO3 thin films

    Full text link
    To investigate leakage current density versus electric field characteristics, epitaxial EuTiO3 thin films were deposited on (001) SrTiO3 substrates by pulsed laser deposition and were post-annealed in a reducing atmosphere. This investigation found that conduction mechanisms are strongly related to temperature and voltage polarity. It was determined that from 50 to 150 K the dominant conduction mechanism was a space-charge-limited current under both negative and positive biases. From 200 to 300 K, the conduction mechanism shows Schottky emission and Fowler-Nordheim tunneling behaviors for the negative and positive biases, respectively. This work demonstrates that Eu3+ is one source of leakage current in EuTiO3 thin films.Comment: 17 pages,4 figures, conferenc

    Forchheimer flow to a well-considering time-dependent critical radius

    Get PDF
    Previous studies on the non-Darcian flow into a pumping well assumed that critical radius (RCD) was a constant or infinity, where RCD represents the location of the interface between the non-Darcian flow region and Darcian flow region. In this study, a two-region model considering time-dependent RCD was established, where the non-Darcian flow was described by the Forchheimer equation. A new iteration method was proposed to estimate RCD based on the finite-difference method. The results showed that RCD increased with time until reaching the quasi steady-state flow, and the asymptotic value of RCD only depended on the critical specific discharge beyond which flow became non-Darcian. A larger inertial force would reduce the change rate of RCD with time, and resulted in a smaller RCD at a specific time during the transient flow. The difference between the new solution and previous solutions were obvious in the early pumping stage. The new solution agreed very well with the solution of the previous two-region model with a constant RCD under quasi steady flow. It agreed with the solution of the fully Darcian flow model in the Darcian flow region
    corecore