7 research outputs found

    Medical applications of EPR

    Get PDF
    Selected applications of continuous-wave EPR in medicine are reviewed. This includes detection of reactive oxygen and nitrogen species, pH measurements and oxymetry. Applications of EPR imaging are demonstrated on selected examples and future developments to faster imaging methods are discussed

    Dermatological applications of EPR : skin-deep or in-depth?

    No full text
    The skin is often referred to as the biggest uniform human body organ, and also as the "brain outside", exposed not only, like the lung epithelium, to the atmospheric air but to other constituents of the open environment including changeable temperature and solar irradiation. The importance of what happens in the skin is therefore not to be overestimated for general condition of the whole organism. Techniques of electron paramagnetic resonance (EPR; called also electron spin resonance, ESR) spectroscopy and imaging belong to the important experimental and diagnostic approaches in dermatology, but the size and shape of skin often make technical problems. The present chapter will cover the basic and clinical applications of EPR to study the skin (including skin tumors) and hair. As the numerous available review papers usually describe the specificity of the EPR-related methods for dermatologists, we decided to cover also some basic aspects of dermatology, to make the chapter more useful also to the specialists in EPR theory and instrumentation. A particular emphasis will be put on the most recent discoveries and innovations, to show that the apparently purely dermatological aspects of such investigations reveal also deeper, systemic implications

    Applications of Structural Biology and Bioinformatics in the Investigation of Oxidative Stress-Related Processes

    No full text
    Reactive oxygen species (ROS)-mediated dysfunction of certain biological processes is implicated in different diseases in humans, including cardiovascular, cancer, or neurodegenerative disorders. Not only human cells and tissues are affected by ROS but also all other biological systems, including plants and microorganisms. Primary targets of ROS are proteins, lipids, and nucleic acids. Modifications of these macromolecules result mostly in the start of signalling cascades between proteins, proteins and DNA, DNA and RNA, proteins and RNA, proteins and lipids within single cell compartments, entire cells, or tissues. In this chapter, basics of tools of structural biology (i.e., X-ray crystallography, NMR, and EPR spectroscopy) as well as bioinformatics are presented. These tools are explained as well as how they can be applied in the analysis of ROS-mediated modifications within macromolecules and systems, and perspectives are discussed

    Biophysical characterization of melanoma cell phenotype markers during metastatic progression

    No full text
    corecore