83,970 research outputs found
Chiral geometry and rotational structure for Cs in the projected shell model
The projected shell model with configuration mixing for nuclear chirality is
developed and applied to the observed rotational bands in the chiral nucleus
Cs. For the chiral bands, the energy spectra and electromagnetic
transition probabilities are well reproduced. The chiral geometry illustrated
in the and the is confirmed to be stable against the
configuration mixing. The other rotational bands are also described in the same
framework
Five-quark components in decay
Five-quark components in the are shown to
contribute significantly to decay through
quark-antiquark annihilation transitions. These involve the overlap between the
and components and may be triggered by the confining
interaction between the quarks. With a 10% admixture of five-quark
components in the the decay width can be larger by factors 2 - 3
over that calculated in the quark model with 3 valence quarks, depending on the
details of the confining interaction. The effect of transitions between the
components themselves on the calculated decay width is however
small. The large contribution of the quark-antiquark annihilation transitions
thus may compensate the underprediction of the width of the by
the valence quark model, once the contains
components with 10% probability.Comment: accepted versio
Extending the Energy Framework for Network Simulator 3 (ns-3)
The problem of designing and simulating optimal transmission protocols for
energy harvesting wireless networks has recently received considerable
attention, thus requiring for an accurate modeling of the energy harvesting
process and a consequent redesign of the simulation framework to include it.
While the current ns-3 energy framework allows the definition of new energy
sources that incorporate the contribution of an energy harvester, the
integration of an energy harvester component into an existing energy source is
not straightforward using the existing energy framework. In this poster, we
propose an extension of the energy framework currently released with ns-3 in
order to explicitly introduce the concept of an energy harvester. Starting from
the definition of the general interface, we then provide the implementation of
two simple models for the energy harvester. In addition, we extend the set of
implementations of the current energy framework to include a model for a
supercapacitor energy source and a device energy model for the energy
consumption of a sensor. Finally, we introduce the concept of an energy
predictor, that gathers information from the energy source and harvester and
use this information to predict the amount of energy that will be available in
the future, and we provide an example implementation. As a result of these
efforts, we believe that our contributions to the ns-3 energy framework will
provide a useful tool to enhance the quality of simulations of energy-aware
wireless networks.Comment: 2 pages, 4 figures. Poster presented at WNS3 2014, Atlanta, G
Direction-of-Arrival Estimation Based on Sparse Recovery with Second-Order Statistics
Traditional direction-of-arrival (DOA) estimation techniques perform Nyquist-rate sampling of the received signals and as a result they require high storage. To reduce sampling ratio, we introduce level-crossing (LC) sampling which captures samples whenever the signal crosses predetermined reference levels, and the LC-based analog-to-digital converter (LC ADC) has been shown to efficiently sample certain classes of signals. In this paper, we focus on the DOA estimation problem by using second-order statistics based on the LC samplings recording on one sensor, along with the synchronous samplings of the another sensors, a sparse angle space scenario can be found by solving an minimization problem, giving the number of sources and their DOA's. The experimental results show that our proposed method, when compared with some existing norm-based constrained optimization compressive sensing (CS) algorithms, as well as subspace method, improves the DOA estimation performance, while using less samples when compared with Nyquist-rate sampling and reducing sensor activity especially for long time silence signal
A note on modular forms and generalized anomaly cancellation formulas
By studying modular invariance properties of some characteristic forms, we
prove some new anomaly cancellation formulas which generalize the Han-Zhang and
Han-Liu-Zhang anomaly cancellation formula
- …