83,970 research outputs found

    Chiral geometry and rotational structure for 130^{130}Cs in the projected shell model

    Get PDF
    The projected shell model with configuration mixing for nuclear chirality is developed and applied to the observed rotational bands in the chiral nucleus 130^{130}Cs. For the chiral bands, the energy spectra and electromagnetic transition probabilities are well reproduced. The chiral geometry illustrated in the K plotK~plot and the azithumal plotazithumal~plot is confirmed to be stable against the configuration mixing. The other rotational bands are also described in the same framework

    Five-quark components in Δ(1232)Nπ\Delta(1232)\to N\pi decay

    Full text link
    Five-quark qqqqqˉqqqq\bar q components in the Δ(1232)\Delta(1232) are shown to contribute significantly to Δ(1232)Nπ\Delta(1232)\to N\pi decay through quark-antiquark annihilation transitions. These involve the overlap between the qqqqqq and qqqqqˉqqqq\bar q components and may be triggered by the confining interaction between the quarks. With a \sim 10% admixture of five-quark components in the Δ(1232)\Delta(1232) the decay width can be larger by factors 2 - 3 over that calculated in the quark model with 3 valence quarks, depending on the details of the confining interaction. The effect of transitions between the qqqqqˉqqqq\bar q components themselves on the calculated decay width is however small. The large contribution of the quark-antiquark annihilation transitions thus may compensate the underprediction of the width of the Δ(1232)\Delta(1232) by the valence quark model, once the Δ(1232)\Delta(1232) contains qqqqqˉqqqq\bar q components with \sim 10% probability.Comment: accepted versio

    Extending the Energy Framework for Network Simulator 3 (ns-3)

    Full text link
    The problem of designing and simulating optimal transmission protocols for energy harvesting wireless networks has recently received considerable attention, thus requiring for an accurate modeling of the energy harvesting process and a consequent redesign of the simulation framework to include it. While the current ns-3 energy framework allows the definition of new energy sources that incorporate the contribution of an energy harvester, the integration of an energy harvester component into an existing energy source is not straightforward using the existing energy framework. In this poster, we propose an extension of the energy framework currently released with ns-3 in order to explicitly introduce the concept of an energy harvester. Starting from the definition of the general interface, we then provide the implementation of two simple models for the energy harvester. In addition, we extend the set of implementations of the current energy framework to include a model for a supercapacitor energy source and a device energy model for the energy consumption of a sensor. Finally, we introduce the concept of an energy predictor, that gathers information from the energy source and harvester and use this information to predict the amount of energy that will be available in the future, and we provide an example implementation. As a result of these efforts, we believe that our contributions to the ns-3 energy framework will provide a useful tool to enhance the quality of simulations of energy-aware wireless networks.Comment: 2 pages, 4 figures. Poster presented at WNS3 2014, Atlanta, G

    Direction-of-Arrival Estimation Based on Sparse Recovery with Second-Order Statistics

    Get PDF
    Traditional direction-of-arrival (DOA) estimation techniques perform Nyquist-rate sampling of the received signals and as a result they require high storage. To reduce sampling ratio, we introduce level-crossing (LC) sampling which captures samples whenever the signal crosses predetermined reference levels, and the LC-based analog-to-digital converter (LC ADC) has been shown to efficiently sample certain classes of signals. In this paper, we focus on the DOA estimation problem by using second-order statistics based on the LC samplings recording on one sensor, along with the synchronous samplings of the another sensors, a sparse angle space scenario can be found by solving an ell1ell_1 minimization problem, giving the number of sources and their DOA's. The experimental results show that our proposed method, when compared with some existing norm-based constrained optimization compressive sensing (CS) algorithms, as well as subspace method, improves the DOA estimation performance, while using less samples when compared with Nyquist-rate sampling and reducing sensor activity especially for long time silence signal

    A note on modular forms and generalized anomaly cancellation formulas

    Full text link
    By studying modular invariance properties of some characteristic forms, we prove some new anomaly cancellation formulas which generalize the Han-Zhang and Han-Liu-Zhang anomaly cancellation formula
    corecore