35 research outputs found

    Comparison of methods of data mining techniques for the predictive accuracy.

    Get PDF
    This paper is based on the work of Yeh, Lien (2009). In the paper, authors used the payment data set from the important bank in Taiwan. To build a model, the whole sample was divided in two subsets - training and testing sets - so each model could be trained on the first one and then be evaluated on the second. Our motivation was to see whether the same result could be obtained if we repeatedly apply the models to the different data sets. To do so, Monte Carlo simulation was implemented to generate these sets

    Diamond grinding wheels production study with the use of the finite element method

    Get PDF
    AbstractResearch results on 3D modeling of the diamond grain and its bearing layer when sintering diamond grinding wheels are provided in this paper. The influence of the main characteristics of the wheel materials and the wheel production process, namely the quantity of metallic phase within diamond grain, coefficient of thermal expansion of the metallic phase, the modulus of elasticity of bond material and sintering temperature, on the internal stresses arising in grains is investigated. The results indicate that the stresses in the grains are higher in the areas around the metallic phase. Additionally, sintering temperature has the greatest impact on the stresses of the grain-metallic phase-bond system regardless of the type of the bond. Furthermore, by employing factorial design for the carried out finite element model, a mathematical model that reflects the impact of these factors on the deflected mode of the diamond grain-metallic phase-bond material system is obtained. The results of the analysis allow for the identification of optimal conditions for the efficient production of improved diamond grinding wheels. More specifically, the smallest stresses are observed when using the metal bond with modulus of elasticity 204GPa, the quantity of metallic phase in diamond grain of not higher than 7% and coefficient of thermal expansion of 1.32Γ—10βˆ’51/K or lower. The results obtained from the proposed 3D model can lead to the increase in the diamond grains utilization and improve the overall efficiency of diamond grinding

    Bank Deposit and Credit Policy Management in the Field of Individual Customer Service

    Get PDF
    The article is devoted to the problem of individual customer service quality improvement in the field of provided deposit and credit services. This problem is a priority in determining any commercial bank strategy, since both deposit and credit policies determine the effectiveness of a credit institution development, which largely depends on the level of customer satisfaction. This study aims to determine the management aspects of the deposit and credit policy improvement in the field of commercial bank customer servicing. In the course of the work, they used the elements of system analysis, statistical research methods (summary and grouping, calculation of average values), and SWOT analysis. To assess customer satisfaction, the authors studied the Internet reviews of the largest regional bank of the Primorsky Territory of Russia - PJSC SKB of Primorye "Primsotsbank". The use of the indicated methods in the study made it possible to assess the quality of services provided to clients, identify the problems in their service sector, and develop the measures for their elimination. The results obtained are the basis for making managerial decisions to improve the deposit and credit policy of the studied bank and can be used in commercial banks' practice

    Some features of the surface micro- and macroprofile formation at flat face grinding with spindle axis inclination

    Get PDF
    The work described in this paper pertains to the identification of some features of microand macroprofile formation of surfaces to be machined with flat face grinding, with inclination of the spindle axis. The question of the formation of machined surface profile at through-feed grinding and multiple-pass scheme are considered by using computer-aided simulations in COMPASS environment. More specifically, for flat face through-feed grinding, a generalized empirical equation exhibiting the dependency of concavity from the outer diameter of the face grinding wheel, the spindle axis inclination angle and the width of the surface of the workpiece is acquired. Furthermore, based on the maximum allowable value of flatness deviation and with pre-determined grinding wheel diameter and workpiece width, it is possible to identify the maximum inclination angle at which concavity falls within acceptable limits. For the case of multiple pass flat face grinding, the role of factors such as inclination angle of spindle axis, cross-feed and diameter of the grinding wheel on the height of residual ridges on the surface of the parts is determined through the proposal of an empirical equation. With the aforementioned equations the machinist may reasonably prescribe machining conditions in practice. The conducted research contributes to the expansion of ideas regarding technological possibilities of improvement of flat face grinding

    SENSORLESS SPEED CONTROL OF THE DIRECT CURRENT MOTORS

    Get PDF
    In this paper, a new speed control algorithm for a permanent magnet DC motor which does not require implementation of the angular speed sensor is presented. Three steps are performed to develop the control system: design of speed tracking control algorithm assuming the speed measurement; design of speed observer; design of sensorless speed control algorithm based on the principle of separation. Information about speed is taken from the speed observer using the motor current value. The stability of the composite system dynamics consisting of three subsystems (the speed regulation loop, current regulation loop, and speed observer) is analyzed. The feedback gains tuning procedure for decoupling of three subsystems is given. The simulation results show that the dynamic performance of the designed system is similar to the performance of the system with angular speed measurement. The resulting closed-loop system has structural robustness properties with respect to parametric and coordinate disturbances. References 12, figures 2

    Π‘Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Ρ€Π΅ΠΆΠΈΠΌΠ° ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΊΠΈ Π΄Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ Π½Π°Ρ€ΠΊΠΎΠ·Π½ΠΎ-Π΄Ρ‹Ρ…Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΈ Ρ€Π΅Π°Π½ΠΈΠΌΠ°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ² Π˜Π’Π›

    Get PDF
    The objective:Β Comparison of parameters characterizing the operation of the pressure support regime on modern anesthetic and intensive care ventilators.Subjects and Methods.Β The study included 5 anesthesia machines (MindrayΒ WATOΒ EX-65, DrΣ“ger Primus,Β GEΒ AvanceΒ S/5,Β GEΒ Carestation 650, andΒ GEΒ AisysΒ CS2) and 5 intensive ventilators (Hamilton C1, Hamilton C2,Β GEΒ EngstrΣ§m Carestation, Puritane Bennette 840, and Puritane BennetteΒ 980). All devices were tested using the Ingmar medicalΒ ASLΒ 5000 breathing device. The trigger delay time, the maximum pressure reduction below theΒ PEEPΒ level at the initiation of inspiration,Β PTPΒ (pressure-time product), as well as the level of pressure achieved after 300 and 500 ms from the start of inspiration at different levels of pressure support andΒ PEEPΒ were evaluated.Results.Β The parameters characterizing operation of the trigger system and pattern of the inspiratory pressure set in ventilators used in intensive care and anesthesia ventilators had statistically significant differences. However, in terms of the response rate of the trigger system, modern anesthesia machines (GEΒ AvanceΒ S/2,Β GEΒ Caretation 650, andΒ GEΒ AisysΒ CS2) are not significantly inferior to traditional ventilators, their trigger delay time is about 100 ms. The maximum decrease in pressure belowΒ PEEPΒ before the start of inhalation in the tested intensive ventilators was 1.0–1.5 cm H2O, in modern anesthesia machines this parameter was comparable and made approximately 1.5–2.0 cm H2O (GEΒ AvanceΒ S/2,Β GEΒ Caremation 650, andΒ GEΒ AisysΒ CS2). Assessment of the pressure level achieved after 300 and 500 ms showed that these parameters were closer to the target pressure for ventilators of the pneumatic compressor design, for turbine devices these parameters were approximately 25% less. Anaesthesia devices with a two-circuit pneumatic design had 40% less pressure values compared to devices with a pneumatic compressor design.Conclusion:Β The performance of the trigger system in modern anesthesia and intensive care ventilators does not differ significantly. Most of the anesthesia machines tested did not reach the target pressure within 500 ms, and by this parameter they differ significantly from intensive care respirators.ЦСль: сравнСниС ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»Π΅ΠΉ, Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΡŽΡ‰ΠΈΡ… Ρ€Π°Π±ΠΎΡ‚Ρƒ Ρ€Π΅ΠΆΠΈΠΌΠ° ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΊΠΈ Π΄Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ, Π½Π° соврСмСнных Π½Π°Ρ€ΠΊΠΎΠ·Π½ΠΎ-Π΄Ρ‹Ρ…Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΈ Ρ€Π΅Π°Π½ΠΈΠΌΠ°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚Π°Ρ… искусствСнной вСнтиляции Π»Π΅Π³ΠΊΠΈΡ… (Π˜Π’Π›).ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹.Β Π’ исслСдованиС Π²ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΎ 5 Π½Π°Ρ€ΠΊΠΎΠ·Π½ΠΎ-Π΄Ρ‹Ρ…Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… (MindrayΒ WATOΒ EX-65, DrΣ“ger Primus,Β GEΒ AvanceΒ S/5,Β GEΒ Carestation 650,Β GEΒ AisysΒ CS2) ΠΈ 5 Ρ€Π΅Π°Π½ΠΈΠΌΠ°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ²Β Π˜Π’Π›Β (Hamilton C1, Hamilton C2,Β GEΒ EngstrΣ§m Carestation, Puritane Bennette 840, Puritane Bennette 980). ВсС Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚Ρ‹ тСстировали ΠΏΡ€ΠΈ ΠΏΠΎΠΌΠΎΡ‰ΠΈ ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΡƒΡŽΡ‰Π΅Π³ΠΎ Π΄Ρ‹Ρ…Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ устройства ASLΒ 5000 Ρ„ΠΈΡ€ΠΌΡ‹ Ingmar medical. ΠžΡ†Π΅Π½ΠΈΠ²Π°Π»ΠΈ врСмя Π·Π°Π΄Π΅Ρ€ΠΆΠΊΠΈ срабатывания Ρ‚Ρ€ΠΈΠ³Π³Π΅Ρ€Π°, максимальноС сниТСниС давлСния Π½ΠΈΠΆΠ΅ уровня ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ давлСния Π² ΠΊΠΎΠ½Ρ†Π΅ Π²Ρ‹Π΄ΠΎΡ…Π° (ΠŸΠ”ΠšΠ’) ΠΏΡ€ΠΈ ΠΈΠ½ΠΈΡ†ΠΈΠ°Ρ†ΠΈΠΈ Π²Π΄ΠΎΡ…Π°, ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΒ PTPΒ (pressure-time product), Π° Ρ‚Π°ΠΊΠΆΠ΅ ΡƒΡ€ΠΎΠ²Π΅Π½ΡŒ достигнутого давлСния Ρ‡Π΅Ρ€Π΅Π· 300 ΠΈ 500 мс ΠΎΡ‚ Π½Π°Ρ‡Π°Π»Π° Π²Π΄ΠΎΡ…Π° ΠΏΡ€ΠΈ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… уровнях ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΊΠΈ Π΄Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ ΠΈΒ ΠŸΠ”ΠšΠ’.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹.Β ΠŸΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΠΈ, Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΡŽΡ‰ΠΈΠ΅ Ρ€Π°Π±ΠΎΡ‚Ρƒ Ρ‚Ρ€ΠΈΠ³Π³Π΅Ρ€Π½ΠΎΠΉ систСмы ΠΈ ΠΏΠ°Ρ‚Ρ‚Π΅Ρ€Π½ Π½Π°Π±ΠΎΡ€Π° инспираторного давлСния Ρƒ Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ²Β Π˜Π’Π›, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡ‹Ρ… Π² интСнсивной Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ, ΠΈ Π½Π°Ρ€ΠΊΠΎΠ·Π½ΠΎ-Π΄Ρ‹Ρ…Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ², ΠΈΠΌΠ΅Π»ΠΈ статистичСски Π·Π½Π°Ρ‡ΠΈΠΌΡ‹Π΅ различия. Однако ΠΏΠΎ скорости ΠΎΡ‚ΠΊΠ»ΠΈΠΊΠ° Ρ‚Ρ€ΠΈΠ³Π³Π΅Ρ€Π½ΠΎΠΉ систСмы соврСмСнныС анСстСзиологичСскиС ΠΌΠ°ΡˆΠΈΠ½Ρ‹ (GEΒ AvanceΒ S/2,Β GEΒ Carestation 650,Β GEΒ AisysΒ CS2) сущСствСнно Π½Π΅ ΡƒΡΡ‚ΡƒΠΏΠ°ΡŽΡ‚ Ρ‚Ρ€Π°Π΄ΠΈΡ†ΠΈΠΎΠ½Π½Ρ‹ΠΌ Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚Π°ΠΌΒ Π˜Π’Π›, врСмСннÑя Π·Π°Π΄Π΅Ρ€ΠΆΠΊΠ° Ρ‚Ρ€ΠΈΠ³Π³Π΅Ρ€Π° Ρƒ Π½ΠΈΡ… составляСт ΠΎΠΊΠΎΠ»ΠΎ 100 мс. МаксимальноС сниТСниС давлСния Π½ΠΈΠΆΠ΅Β ΠŸΠ”ΠšΠ’Β Π΄ΠΎ запуска Π²Π΄ΠΎΡ…Π° Ρƒ тСстируСмых Ρ€Π΅Π°Π½ΠΈΠΌΠ°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ²Β Π˜Π’Π›Β ΡΠΎΡΡ‚Π°Π²ΠΈΠ»ΠΎ 1,0β€’1,5 см Н2О, Ρƒ соврСмСнных Π½Π°Ρ€ΠΊΠΎΠ·Π½Ρ‹Ρ… Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ² этот ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒ оказался сопоставимым, составил ΠΏΡ€ΠΈΠ±Π»ΠΈΠ·ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ 1,5β€’2,0 см Н2О (GEΒ AvanceΒ S/2,Β GEΒ CarestationΒ 650,Β GEΒ AisysΒ CS2). ΠžΡ†Π΅Π½ΠΊΠ° уровня достигнутого давлСния Ρ‡Π΅Ρ€Π΅Π· 300 ΠΈ 500 мс продСмонстрировала, Ρ‡Ρ‚ΠΎ эти ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΠΈ оказались Π±Π»ΠΈΠΆΠ΅ ΠΊ Ρ†Π΅Π»Π΅Π²ΠΎΠΌΡƒ давлСнию ΡƒΒ Π˜Π’Π›Β ΠΏΠ½Π΅Π²ΠΌΠΎΠΊΠΎΠΌΠΏΡ€Π΅ΡΡΠΎΡ€Π½ΠΎΠΉ конструкции, Ρƒ Ρ‚ΡƒΡ€Π±ΠΈΠ½Π½Ρ‹Ρ… Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ² β€’ оказались ΠΏΡ€ΠΈΠ±Π»ΠΈΠ·ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π½Π° 25% мСньшС. Π£Β Π½Π°Ρ€ΠΊΠΎΠ·Π½Ρ‹Ρ… Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ² с Π΄Π²ΡƒΡ…ΠΊΠΎΠ½Ρ‚ΡƒΡ€Π½ΠΎΠΉ пнСвматичСской конструкциСй значСния давлСния оказались мСньшС Π½Π° 40% ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚Π°ΠΌΠΈ пнСвмокомпрСссорной конструкции.Π’Ρ‹Π²ΠΎΠ΄.Β ΠŸΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΠΈ Ρ€Π°Π±ΠΎΡ‚Ρ‹ Ρ‚Ρ€ΠΈΠ³Π³Π΅Ρ€Π½ΠΎΠΉ систСмы Ρƒ соврСмСнных Π½Π°Ρ€ΠΊΠΎΠ·Π½Ρ‹Ρ… ΠΈ Ρ€Π΅Π°Π½ΠΈΠΌΠ°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ²Β Π˜Π’Π›Β ΡΡƒΡ‰Π΅ΡΡ‚Π²Π΅Π½Π½ΠΎ Π½Π΅ ΠΎΡ‚Π»ΠΈΡ‡Π°ΡŽΡ‚ΡΡ. Π‘ΠΎΠ»ΡŒΡˆΠΈΠ½ΡΡ‚Π²ΠΎ тСстируСмых Π½Π°Ρ€ΠΊΠΎΠ·Π½Ρ‹Ρ… Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ² Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ 500 мс Π½Π΅ достигали Ρ†Π΅Π»Π΅Π²ΠΎΠ³ΠΎ давлСния ΠΈ ΠΏΠΎ этому ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŽ сущСствСнно ΠΎΡ‚Π»ΠΈΡ‡Π°ΡŽΡ‚ΡΡ ΠΎΡ‚ Ρ€Π΅Π°Π½ΠΈΠΌΠ°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… рСспираторов

    Π‘Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ эффСктивности Ρ€Π΅ΠΆΠΈΠΌΠΎΠ² ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΊΠΈ Π΄Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ ΠΈ ΠΏΡ€ΠΈΠ½ΡƒΠ΄ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ вСнтиляции Π² ΠΊΠΎΠ½Ρ†Π΅ ΠΎΠ±Ρ‰Π΅ΠΉ ΠΊΠΎΠΌΠ±ΠΈΠ½ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ анСстСзии

    Get PDF
    The objective: to compare effectiveness of pressure support and mandatory ventilation modes at the final stage of general anesthesia.Subjects and Methods. 58 patients were included in the study. All patients underwent laparoscopic or open surgery under combined general anesthesia with muscle relaxants and tracheal intubation. At the end of the operation, after suturing the muscle layer, patients were randomly divided into two groups, depending on the further mode of ventilation: the mandatory mode group with dual control until extubation (n = 29) and the spontaneous breathing mode group with pressure support (n = 29). The time of awakening, the severity of post-extubation cough, hemodynamic parameters and oxygenation immediately before and 5 minutes after extubation were assessed.Results. In the groups of patients, statistically significant differences were observed in the time of awakening (252 Β± 67 sec and 426 Β± 71 sec in PSV and PCV-VG Groups, respectively), extubation (287 Β± 55 sec and 464 Β± 67 sec in the PSV and PCV-VG groups, respectively), and transfer from the operating room (473 Β± 60 sec and 687 Β± 77 sec in the PSV and PCV-VG groups, respectively) (p < 0.0001). Also, patients receiving PSV respiratory support had higher saturation levels 5 minutes after extubation (p < 0.0001), and heart rate and mean arterial pressure immediately before extubation were lower than in the mandatory ventilation group (p = 0.013 and p < 0.0001, respectively). In addition, in the mode of spontaneous breathing with pressure support, a lower severity of post-extubation cough was observed (p = 0.003).Conclusion. The use of a spontaneous breathing mode with pressure support at the end of general combined anesthesia has several advantages versus mandatory ventilation mode. These advantages include faster awakening, extubation and transfer of the patient to the ward, lower severity of post-extubation cough, as well as better gas exchange after extubation, lower intensity of hypertension and tachycardia before it.  ЦСль: ΡΡ€Π°Π²Π½ΠΈΡ‚ΡŒ ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ примСнСния Ρ€Π΅ΠΆΠΈΠΌΠΎΠ² ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΊΠΈ Π΄Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ ΠΈ ΠΏΡ€ΠΈΠ½ΡƒΠ΄ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ вСнтиляции Π»Π΅Π³ΠΊΠΈΡ… Π½Π° Π·Π°Π²Π΅Ρ€ΡˆΠ°ΡŽΡ‰Π΅ΠΉ стадии ΠΎΠ±Ρ‰Π΅ΠΉ анСстСзии.ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. Π’ исслСдованиС Π²ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΎ 58 ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ². ВсСм Π²Ρ‹ΠΏΠΎΠ»Π½ΡΠ»ΠΈΡΡŒ лапароскопичСскиС Π»ΠΈΠ±ΠΎ ΠΎΡ‚ΠΊΡ€Ρ‹Ρ‚Ρ‹Π΅ ΠΎΠΏΠ΅Ρ€Π°Ρ‚ΠΈΠ²Π½Ρ‹Π΅ Π²ΠΌΠ΅ΡˆΠ°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π° Π² условиях ΠΎΠ±Ρ‰Π΅ΠΉ ΠΊΠΎΠΌΠ±ΠΈΠ½ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ анСстСзии с ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ миорСлаксантов ΠΈ ΠΈΠ½Ρ‚ΡƒΠ±Π°Ρ†ΠΈΠΈ Ρ‚Ρ€Π°Ρ…Π΅ΠΈ. Π’ ΠΊΠΎΠ½Ρ†Π΅ ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ, послС ΡƒΡˆΠΈΠ²Π°Π½ΠΈΡ ΠΌΡ‹ΡˆΠ΅Ρ‡Π½ΠΎΠ³ΠΎ слоя, ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚Ρ‹ Π±Ρ‹Π»ΠΈ случайно Ρ€Π°Π·Π΄Π΅Π»Π΅Π½Ρ‹ Π½Π° Π΄Π²Π΅ Π³Ρ€ΡƒΠΏΠΏΡ‹ Π² зависимости ΠΎΡ‚ дальнСйшСго Ρ€Π΅ΠΆΠΈΠΌΠ° вСнтиляции: Π³Ρ€ΡƒΠΏΠΏΠ° ΠΏΡ€ΠΈΠ½ΡƒΠ΄ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ Ρ€Π΅ΠΆΠΈΠΌΠ° с Π΄Π²ΠΎΠΉΠ½Ρ‹ΠΌ ΡƒΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ Π²ΠΏΠ»ΠΎΡ‚ΡŒ Π΄ΠΎ экстубации (n = 29) ΠΈ Π³Ρ€ΡƒΠΏΠΏΠ° Ρ€Π΅ΠΆΠΈΠΌΠ° ΡΠ°ΠΌΠΎΡΡ‚ΠΎΡΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ дыхания с ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΊΠΎΠΉ Π΄Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ (n = 29). ΠžΡ†Π΅Π½ΠΈΠ²Π°Π»ΠΈ Π²Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Π΅ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ пробуТдСния, Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½Π½ΠΎΡΡ‚ΡŒ постэкстубационного кашля, ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π΅ΠΌΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ ΠΈ оксигСнации нСпосрСдствСнно ΠΏΠ΅Ρ€Π΅Π΄ ΠΈ Ρ‡Π΅Ρ€Π΅Π· 5 ΠΌΠΈΠ½ послС экстубации.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. Π’ Π³Ρ€ΡƒΠΏΠΏΠ°Ρ… ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² наблюдали статистичСски достовСрноС Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΠ΅ Π²Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Ρ… ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»Π΅ΠΉ пробуТдСния (252 Β± 67 ΠΈ 426 Β± 71 с Π² Π³Ρ€ΡƒΠΏΠΏΠ°Ρ… PSV ΠΈ PCV-VG соотвСтствСнно), экстубации (287 Β± 55 ΠΈ 464 Β± 67 Π² Π³Ρ€ΡƒΠΏΠΏΠ°Ρ… PSV ΠΈ PCV-VG соотвСтствСнно) ΠΈ ΠΏΠ΅Ρ€Π΅Π²ΠΎΠ΄Π° Π² ΠΎΡ‚Π΄Π΅Π»Π΅Π½ΠΈΠ΅ (473 Β± 60 ΠΈ 687 Β± 77 Π² Π³Ρ€ΡƒΠΏΠΏΠ°Ρ… PSV ΠΈ PCV-VG соотвСтствСнно) (p < 0,0001). Π’Π°ΠΊΠΆΠ΅ Ρƒ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ², ΠΏΠΎΠ»ΡƒΡ‡Π°Π²ΡˆΠΈΡ… Ρ€Π΅ΡΠΏΠΈΡ€Π°Ρ‚ΠΎΡ€Π½ΡƒΡŽ ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΊΡƒ Π² Ρ€Π΅ΠΆΠΈΠΌΠ΅ PSV, ΠΎΡ‚ΠΌΠ΅Ρ‡Π°Π»ΠΈ Π±ΠΎΠ»Π΅Π΅ высокий ΡƒΡ€ΠΎΠ²Π΅Π½ΡŒ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»Π΅ΠΉ сатурации Ρ‡Π΅Ρ€Π΅Π· 5 ΠΌΠΈΠ½ послС экстубации (p < 0,0001), Π° частота сСрдСчных сокращСний ΠΈ срСднСС Π°Ρ€Ρ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠ΅ Π΄Π°Π²Π»Π΅Π½ΠΈΠ΅ нСпосрСдствСнно ΠΏΠ΅Ρ€Π΅Π΄ экстубациСй Π±Ρ‹Π»ΠΈ Π½ΠΈΠΆΠ΅, Ρ‡Π΅ΠΌ Π² Π³Ρ€ΡƒΠΏΠΏΠ΅ ΠΏΡ€ΠΈΠ½ΡƒΠ΄ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ Ρ€Π΅ΠΆΠΈΠΌΠ° вСнтиляции (p = 0,013 ΠΈ p < 0,0001 соотвСтствСнно). ΠšΡ€ΠΎΠΌΠ΅ Ρ‚ΠΎΠ³ΠΎ, Π² Ρ€Π΅ΠΆΠΈΠΌΠ΅ ΡΠ°ΠΌΠΎΡΡ‚ΠΎΡΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ дыхания с ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΊΠΎΠΉ Π΄Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ наблюдалась мСньшая Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½Π½ΠΎΡΡ‚ΡŒ постэкстубационного кашля (p = 0,003).Π’Ρ‹Π²ΠΎΠ΄. ΠŸΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Ρ€Π΅ΠΆΠΈΠΌΠ° ΡΠ°ΠΌΠΎΡΡ‚ΠΎΡΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ дыхания с ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΊΠΎΠΉ Π΄Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ Π² ΠΊΠΎΠ½Ρ†Π΅ ΠΎΠ±Ρ‰Π΅ΠΉ ΠΊΠΎΠΌΠ±ΠΈΠ½ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ анСстСзии ΠΈΠΌΠ΅Π΅Ρ‚ ряд прСимущСств ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с использованиСм ΠΏΡ€ΠΈΠ½ΡƒΠ΄ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ Ρ€Π΅ΠΆΠΈΠΌΠ° вСнтиляции. К Π½ΠΈΠΌ относятся Π±ΠΎΠ»Π΅Π΅ быстроС ΠΏΡ€ΠΎΠ±ΡƒΠΆΠ΄Π΅Π½ΠΈΠ΅, экстубация ΠΈ ΠΏΠ΅Ρ€Π΅Π²ΠΎΠ΄ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚Π° Π² ΠΎΡ‚Π΄Π΅Π»Π΅Π½ΠΈΠ΅, мСньшая Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½Π½ΠΎΡΡ‚ΡŒ постэкстубационного кашля, Π»ΡƒΡ‡ΡˆΠΈΠΉ Π³Π°Π·ΠΎΠΎΠ±ΠΌΠ΅Π½ послС экстубации, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΌΠ΅Π½Π΅Π΅ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½Π½Ρ‹Π΅ гипСртСнзия ΠΈ тахикардия Π΄ΠΎ Π½Π΅Π΅

    Π‘Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ эффСктивности Ρ€Π΅ΠΆΠΈΠΌΠΎΠ² ΡΠ°ΠΌΠΎΡΡ‚ΠΎΡΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ дыхания с ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΊΠΎΠΉ Π΄Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ ΠΈ ΠΏΡ€ΠΈΠ½ΡƒΠ΄ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ вСнтиляции с ΡƒΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ ΠΏΠΎ ΠΎΠ±ΡŠΠ΅ΠΌΡƒ Π²ΠΎ врСмя ΠΎΠ±Ρ‰Π΅ΠΉ ΠΊΠΎΠΌΠ±ΠΈΠ½ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ анСстСзии Π±Π΅Π· использования миорСлаксантов

    Get PDF
    To compare efficacy of spontaneous breathing with pressure support and volume-controlled mandatory ventilation during combined general anesthesia using desflurane and without muscle relaxants.Subjects and Methods.Β 100 patients were included in the study. All underwent low-traumatic operations on the lower limbs under general combined anesthesia using supraglottic air devices without muscle relaxants. Immediately prior to the induction of anesthesia, patients were randomly divided into two groups: Group 1 (VCV) where a mandatory volume control mode was used (nΒ =Β 50) and Group 2 (PSV) where a pressure support mode was used (nΒ =Β 50). The following parameters were assessed: hemodynamics, gas exchange, depth of anesthesia before induction, during and after the end of general anesthesia; arterial blood gas composition one hour after induction of anesthesia; indicators of pressure in the respiratory tract during mechanical ventilation, as well as time parameters of awakening.Results.Β In patients of Group 2 (PSV), according to the analysis of arterial blood gases, a higher level of PaO2Β (pΒ =Β 0.006), Horowitz index (pΒ =Β 0.005), and carbon dioxide level (pΒ <Β 0.0001) were noted. In Group 1 (VCV), higher mean and peak airway pressures were found one hour after induction and 10 minutes before the end of surgery (pΒ <Β 0.05). Also in the groups, there were statistically significant differences in the time parameters of awakening (233Β Β±Β 58 sec and 352Β Β±Β 83 sec in theΒ PSVΒ andΒ VCVΒ groups, respectively), supraglottic airway device removal time (268Β Β±Β 62 sec and 398Β Β±Β 84 sec in theΒ PSVΒ andΒ VCV groups, respectively) and transfer to the wardΒ (395Β Β±Β 60 sec and 571Β Β±Β 66 sec in theΒ PSVΒ andΒ VCVΒ groups, respectively) (pΒ <Β 0.0001). There were no significant differences in the main parameters of hemodynamics and depth of anesthesia, the consumption of anesthetics used during induction and maintenance of general anesthesia.Conclusion:Β The use of spontaneous breathing with pressure support during general combined anesthesia without muscle relaxants has a number of advantages versus mandatory ventilation mode. These include better oxygenation rates, lower airway pressure, faster awakening, supraglottic airway device removal time, and transfer of the patient to the ward. At the same time, acceptable ventilation, stable hemodynamic parameters and depth of anesthesia are maintained.ЦСль:Β ΡΡ€Π°Π²Π½ΠΈΡ‚ΡŒ ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ Ρ€Π΅ΠΆΠΈΠΌΠΎΠ² ΡΠ°ΠΌΠΎΡΡ‚ΠΎΡΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ дыхания с ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΊΠΎΠΉ Π΄Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ ΠΈ ΠΏΡ€ΠΈΠ½ΡƒΠ΄ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ вСнтиляции с ΡƒΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ ΠΏΠΎ ΠΎΠ±ΡŠΠ΅ΠΌΡƒ Π²ΠΎ врСмя ΠΎΠ±Ρ‰Π΅ΠΉ ΠΊΠΎΠΌΠ±ΠΈΠ½ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ анСстСзии с использованиСм дСсфлурана Π±Π΅Π· примСнСния миорСлаксантов.ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹.Β Π’ исслСдованиС Π²ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΎ 100 ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ². ВсСм Π²Ρ‹ΠΏΠΎΠ»Π½ΡΠ»ΠΈΡΡŒ ΠΌΠ°Π»ΠΎΡ‚Ρ€Π°Π²ΠΌΠ°Ρ‚ΠΈΡ‡Π½Ρ‹Π΅ ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ Π½Π° Π½ΠΈΠΆΠ½ΠΈΡ… конСчностях Π² условиях ΠΎΠ±Ρ‰Π΅ΠΉ ΠΊΠΎΠΌΠ±ΠΈΠ½ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ анСстСзии с использованиСм Π½Π°Π΄Π³ΠΎΡ€Ρ‚Π°Π½Π½Ρ‹Ρ… Π²ΠΎΠ·Π΄ΡƒΡ…ΠΎΠ²ΠΎΠ΄ΠΎΠ² Π±Π΅Π· примСнСния миорСлаксантов. НСпосрСдствСнно ΠΏΠ΅Ρ€Π΅Π΄ ΠΈΠ½Π΄ΡƒΠΊΡ†ΠΈΠ΅ΠΉ анСстСзии ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚Ρ‹ Π±Ρ‹Π»ΠΈ случайно Ρ€Π°Π·Π΄Π΅Π»Π΅Π½Ρ‹ Π½Π° Π΄Π²Π΅ Π³Ρ€ΡƒΠΏΠΏΡ‹:Β 1-я группа (VCV), Π² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ использовали ΠΏΡ€ΠΈΠ½ΡƒΠ΄ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ Ρ€Π΅ΠΆΠΈΠΌ с ΡƒΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ ΠΏΠΎ ΠΎΠ±ΡŠΠ΅ΠΌΡƒ (nΒ =Β 50), ΠΈΒ 2-я группа (PSV), Π² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ примСняли Ρ€Π΅ΠΆΠΈΠΌ ΡΠ°ΠΌΠΎΡΡ‚ΠΎΡΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ дыхания с ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΊΠΎΠΉ Π΄Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ (nΒ =Β 50). ΠžΡ†Π΅Π½ΠΈΠ²Π°Π»ΠΈ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π΅ΠΌΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ, Π³Π°Π·ΠΎΠΎΠ±ΠΌΠ΅Π½Π°, Π³Π»ΡƒΠ±ΠΈΠ½Ρ‹ анСстСзии Π΄ΠΎ ΠΈΠ½Π΄ΡƒΠΊΡ†ΠΈΠΈ, Π²ΠΎ врСмя ΠΈ послС окончания ΠΎΠ±Ρ‰Π΅ΠΉ анСстСзии; Π³Π°Π·ΠΎΠ²Ρ‹ΠΉ состав Π°Ρ€Ρ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ ΠΊΡ€ΠΎΠ²ΠΈ Ρ‡Π΅Ρ€Π΅Π· 1 Ρ‡ послС ΠΈΠ½Π΄ΡƒΠΊΡ†ΠΈΠΈ анСстСзии; ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΠΈ давлСния Π² Π΄Ρ‹Ρ…Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… путях Π²ΠΎ врСмя провСдСния искусствСнной вСнтиляции Π»Π΅Π³ΠΊΠΈΡ…, Π° Ρ‚Π°ΠΊΠΆΠ΅ Π²Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Π΅ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ пробуТдСния.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹.Β Π£ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ²Β 2-ΠΉΒ Π³Ρ€ΡƒΠΏΠΏΡ‹ (PSV) ΠΏΠΎ Π΄Π°Π½Π½Ρ‹ΠΌ Π°Π½Π°Π»ΠΈΠ·Π° Π³Π°Π·ΠΎΠ²ΠΎΠ³ΠΎ состава Π°Ρ€Ρ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ ΠΊΡ€ΠΎΠ²ΠΈ ΠΎΡ‚ΠΌΠ΅Ρ‡Π°Π»ΠΈ Π±ΠΎΠ»Π΅Π΅ высокий ΡƒΡ€ΠΎΠ²Π΅Π½ΡŒ РаО2Β (pΒ =Β 0,006), индСкса Π“ΠΎΡ€ΠΎΠ²ΠΈΡ†Π° (pΒ =Β 0,005), Π° Ρ‚Π°ΠΊΠΆΠ΅ уровня углСксислого Π³Π°Π·Π° (pΒ <Β 0,0001). Π’Β 1-ΠΉΒ Π³Ρ€ΡƒΠΏΠΏΠ΅ (VCV) Π±Ρ‹Π»ΠΈ выявлСны Π±ΠΎΠ»Π΅Π΅ высокиС ΡƒΡ€ΠΎΠ²Π½ΠΈ срСднСго ΠΈ ΠΏΠΈΠΊΠΎΠ²ΠΎΠ³ΠΎ Π΄Π°Π²Π»Π΅Π½ΠΈΠΉ Π² Π΄Ρ‹Ρ…Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… путях Ρ‡Π΅Ρ€Π΅Π· 1 Ρ‡ послС ΠΈΠ½Π΄ΡƒΠΊΡ†ΠΈΠΈ ΠΈ Π·Π° 10 ΠΌΠΈΠ½ Π΄ΠΎ окончания ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ (pΒ <Β 0,05). Π’Π°ΠΊΠΆΠ΅ ΠΌΠ΅ΠΆΠ΄Ρƒ Π³Ρ€ΡƒΠΏΠΏΠ°ΠΌΠΈ наблюдали статистичСски Π·Π½Π°Ρ‡ΠΈΠΌΡ‹Π΅ различия Π²Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Ρ… ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»Π΅ΠΉ пробуТдСния (233Β Β±Β 58 ΠΈ 352Β Β±Β 83 с Π² Π³Ρ€ΡƒΠΏΠΏΠ°Ρ…Β PSVΒ ΠΈΒ VCV соотвСтствСнно), удалСния Π½Π°Π΄Π³ΠΎΡ€Ρ‚Π°Π½Π½ΠΎΠ³ΠΎ Π²ΠΎΠ·Π΄ΡƒΡ…ΠΎΠ²ΠΎΠ΄Π° (268Β Β±Β 62 ΠΈ 398Β Β±Β 84 с Π² Π³Ρ€ΡƒΠΏΠΏΠ°Ρ…Β PSVΒ ΠΈΒ VCV соотвСтствСнно) ΠΈ ΠΏΠ΅Ρ€Π΅Π²ΠΎΠ΄Π° Π² ΠΎΡ‚Π΄Π΅Π»Π΅Π½ΠΈΠ΅ (395Β Β±Β 60 ΠΈ 571Β Β±Β 66 с Π² Π³Ρ€ΡƒΠΏΠΏΠ°Ρ…Β PSVΒ ΠΈΒ VCV соотвСтствСнно) (pΒ <Β 0,0001). НС выявлСно Π·Π½Π°Ρ‡ΠΈΠΌΡ‹Ρ… Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΠΉ ΠΏΠΎ основным показатСлям Π³Π΅ΠΌΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ ΠΈ Π³Π»ΡƒΠ±ΠΈΠ½Ρ‹ анСстСзии, расходу анСстСтиков, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Π½Ρ‹Ρ… Π²ΠΎ врСмя ΠΈΠ½Π΄ΡƒΠΊΡ†ΠΈΠΈ ΠΈ поддСрТания ΠΎΠ±Ρ‰Π΅ΠΉ анСстСзии.Π’Ρ‹Π²ΠΎΠ΄.Β ΠŸΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Ρ€Π΅ΠΆΠΈΠΌΠ° ΡΠ°ΠΌΠΎΡΡ‚ΠΎΡΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ дыхания с ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΊΠΎΠΉ Π΄Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ Π²ΠΎ врСмя ΠΎΠ±Ρ‰Π΅ΠΉ ΠΊΠΎΠΌΠ±ΠΈΠ½ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ анСстСзии Π±Π΅Π· использования миорСлаксантов ΠΈΠΌΠ΅Π΅Ρ‚ ряд прСимущСств ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с ΠΏΡ€ΠΈΠ½ΡƒΠ΄ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ Ρ€Π΅ΠΆΠΈΠΌΠΎΠΌ вСнтиляции. К Π½ΠΈΠΌ относятся Π»ΡƒΡ‡ΡˆΠΈΠ΅ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΠΈ оксигСнации, мСньшСС Π΄Π°Π²Π»Π΅Π½ΠΈΠ΅ Π² Π΄Ρ‹Ρ…Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… путях, Π±ΠΎΠ»Π΅Π΅ ΠΊΠΎΡ€ΠΎΡ‚ΠΊΠΎΠ΅ врСмя Π΄ΠΎ пробуТдСния, удалСния Π½Π°Π΄Π³ΠΎΡ€Ρ‚Π°Π½Π½ΠΎΠ³ΠΎ Π²ΠΎΠ·Π΄ΡƒΡ…ΠΎΠ²ΠΎΠ΄Π° ΠΈ ΠΏΠ΅Ρ€Π΅Π²ΠΎΠ΄Π° ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚Π° Π² ΠΎΡ‚Π΄Π΅Π»Π΅Π½ΠΈΠ΅. ΠŸΡ€ΠΈ этом ΡΠΎΡ…Ρ€Π°Π½ΡΡŽΡ‚ΡΡ приСмлСмая вСнтиляция, ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½Ρ‹Π΅ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π΅ΠΌΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ ΠΈ Π³Π»ΡƒΠ±ΠΈΠ½Π° анСстСзии

    Бпосіб визначСння ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΎΡ— ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†Ρ–Ρ— Π°Π»ΠΌΠ°Π·Π½ΠΈΡ… ΠΊΡ€ΡƒΠ³Ρ–Π² Π½Π° ΠΌΠ΅Ρ‚Π°Π»Π΅Π²ΠΈΡ… Π·Π²'язках

    Get PDF
    Бпосіб визначСння ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΎΡ— ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†Ρ–Ρ— Π°Π»ΠΌΠ°Π·Π½ΠΈΡ… ΠΊΡ€ΡƒΠ³Ρ–Π² Π½Π° ΠΌΠ΅Ρ‚Π°Π»Π΅Π²ΠΈΡ… Π·Π²'язках ΡˆΠ»ΡΡ…ΠΎΠΌ ΡˆΠ»Ρ–Ρ„ΡƒΠ²Π°Π½Π½Ρ полікристалічних Π½Π°Π΄Ρ‚Π²Π΅Ρ€Π΄ΠΈΡ… ΠΌΠ°Ρ‚Π΅Ρ€Ρ–Π°Π»Ρ–Π² Π· Π±Π΅Π·ΠΏΠ΅Ρ€Π΅Ρ€Π²Π½ΠΎΡŽ Π°Π²Ρ‚ΠΎΠ½ΠΎΠΌΠ½ΠΎΡŽ Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΡ…Ρ–ΠΌΡ–Ρ‡Π½ΠΎΡŽ ΠΏΡ€Π°Π²ΠΊΠΎΡŽ Ρ€ΠΎΠ±ΠΎΡ‡ΠΎΡ— ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½Ρ– Π°Π»ΠΌΠ°Π·Π½ΠΎΠ³ΠΎ ΠΊΡ€ΡƒΠ³Π°. ΠŸΡ€ΠΈ Ρ†ΠΈΡ‚ΡƒΠ²Π°Π½Π½Ρ– Π΄ΠΎΠΊΡƒΠΌΠ΅Π½Ρ‚Π°, використовуйтС посилання http://essuir.sumdu.edu.ua/handle/123456789/2777

    Block Copolymers of Ethylene Oxide andΒ Propylene Oxide: Prospects for Medical and Pharmaceutical Application in Russia

    Get PDF
    Block copolymers of ethylene oxide and propylene oxide (EO/PO block copolymers) are polymeric non-ionic surfactants with a high hydrophilic–lipophilic balance also referred to as pluronics, poloxamers, or proxanols. These compounds are among the most demanded modern excipients for the production of medicines. EO/PO block copolymers are used both in the production of traditional (liquid, semi-solid, and solid) dosage forms and as part of targeted delivery systems. The extensive application of EO/PO block copolymers is due to the diverse array of their properties, including not only solubilising, emulsifying, gelling, and other effects but also thermoreversibility, which is essential for developing in situ delivery systems and 3D printing technologies.The aim of the study was to evaluate the potential of EO/PO block copolymers for medicinal use and to assess the range of medicinal products approved in the Russian Federation that contain EO/PO block copolymers.This review presents an analysis of the register of poloxamer-containing medicines approved in the Russian Federation, a list of the largest manufacturers of EO/PO block copolymers in the world, and a study of the possibility to use copolymers for medical purposes. Currently, there are more than 10 chemical manufacturers producing EO/PO block copolymers for the pharmaceutical, biotechnology, and other industries around the world. EO/PO block copolymers are included in more than 60 medicinal products present in the Russian pharmaceutical market; this observation indicates the need to phase out the import of poloxamers
    corecore