11 research outputs found

    Curiosity: How to Boldly Go...

    Get PDF
    Operating a one-ton rover on the surface of Mars requires more than just a joystick and an experiment. With 10 science instruments, 17 cameras, a radioisotope thermoelectric generator and lasers, Curiosity is the largest and most complex rover NASA has sent to Mars. Combined with a 1 way light time of 4 to 20 minutes and a distributed international science and engineering team, it takes a lot of work to operate this mega-rover. The Mars Science Lab's operations team has developed an organization and process that maximizes science return and safety of the spacecraft. These are the voyages of the rover Curiosity, its 2 year mission, to determine the habitability of Gale Crater, to understand the role of water, to study the climate and geology of Mars

    Supporting Real-Time Operations and Execution through Timeline and Scheduling Aids

    Get PDF
    Since 2003, the NASA Ames Research Center has been actively involved in researching and advancing the state-of-the-art of planning and scheduling tools for NASA mission operations. Our planning toolkit SPIFe (Scheduling and Planning Interface for Exploration) has supported a variety of missions and field tests, scheduling activities for Mars rovers as well as crew on-board International Space Station and NASA earth analogs. The scheduled plan is the integration of all the activities for the day/s. In turn, the agents (rovers, landers, spaceships, crew) execute from this schedule while the mission support team members (e.g., flight controllers) follow the schedule during execution. Over the last couple of years, our team has begun to research and validate methods that will better support users during realtime operations and execution of scheduled activities. Our team utilizes human-computer interaction principles to research user needs, identify workflow processes, prototype software aids, and user test these. This paper discusses three specific prototypes developed and user tested to support real-time operations: Score Mobile, Playbook, and Mobile Assistant for Task Execution (MATE)

    An Extensible, User- Modifiable Framework for Planning Activities

    Get PDF
    This software provides a development framework that allows planning activities for the Mars Science Laboratory rover to be altered at any time, based on changes of the Activity Dictionary. The Activity Dictionary contains the definition of all activities that can be carried out by a particular asset (robotic or human). These definitions (and combinations of these definitions) are used by mission planners to give a daily plan of what a mission should do. During the development and course of the mission, the Activity Dictionary and actions that are going to be carried out will often be changed. Previously, such changes would require a change to the software and redeployment. Now, the Activity Dictionary authors are able to customize activity definitions, parameters, and resource usage without requiring redeployment. This software provides developers and end users the ability to modify the behavior of automatically generated activities using a script. This allows changes to the software behavior without incurring the burden of redeployment. This software is currently being used for the Mars Science Laboratory, and is in the process of being integrated into the LADEE (Lunar Atmosphere and Dust Environment Explorer) mission, as well as the International Space Station

    MSLICE Science Activity Planner for the Mars Science Laboratory Mission

    Get PDF
    MSLICE (Mars Science Laboratory InterfaCE) is the tool used by scientists and engineers on the Mars Science Laboratory rover mission to visualize the data returned by the rover and collaboratively plan its activities. It enables users to efficiently and effectively search all mission data to find applicable products (e.g., images, targets, activity plans, sequences, etc.), view and plan the traverse of the rover in HiRISE (High Resolution Imaging Science Experiment) images, visualize data acquired by the rover, and develop, model, and validate the activities the rover will perform. MSLICE enables users to securely contribute to the mission s activity planning process from their home institutions using off-the-shelf laptop computers. This software has made use of several plug-ins (software components) developed for previous missions [e.g., Mars Exploration Rover (MER), Phoenix Mars Lander (PHX)] and other technology tasks. It has a simple, intuitive, and powerful search capability. For any given mission, there is a huge amount of data and associated metadata that is generated. To help users sort through this information, MSLICE s search interface is provided in a similar fashion as major Internet search engines. With regard to the HiRISE visualization of the rover s traverse, this view is a map of the mission that allows scientists to easily gauge where the rover has been and where it is likely to go. The map also provides the ability to correct or adjust the known position of the rover through the overlaying of images acquired from the rover on top of the HiRISE image. A user can then correct the rover s position by collocating the visible features in the overlays with the same features in the underlying HiRISE image. MSLICE users can also rapidly search all mission data for images that contain a point specified by the user in another image or panoramic mosaic. MSLICE allows the creation of targets, which provides a way for scientists to collaboratively name features on the surface of Mars. These targets can also be used to convey instrument-pointing information to the activity plan. The software allows users to develop a plan of what they would like the rover to accomplish for a given time period. When developing the plan, the user can input constraints between activities or groups of activities. MSLICE will enforce said constraints and ensure that all mission flight rules are satisfied

    Social Tagging of Mission Data

    Get PDF
    Mars missions will generate a large amount of data in various forms, such as daily plans, images, and scientific information. Often, there is a semantic linkage between images that cannot be captured automatically. Software is needed that will provide a method for creating arbitrary tags for this mission data so that items with a similar tag can be related to each other. The tags should be visible and searchable for all users. A new routine was written to offer a new and more flexible search option over previous applications. This software allows users of the MSLICE program to apply any number of arbitrary tags to a piece of mission data through a MSLICE search interface. The application of tags creates relationships between data that did not previously exist. These tags can be easily removed and changed, and contain enough flexibility to be specifically configured for any mission. This gives users the ability to quickly recall or draw attention to particular pieces of mission data, for example: Give a semantic and meaningful description to mission data; for example, tag all images with a rock in them with the tag "rock." Rapidly recall specific and useful pieces of data; for example, tag a plan as"driving template." Call specific data to a user s attention; for example, tag a plan as "for:User." This software is part of the MSLICE release, which was written in Java. It will run on any current Windows, Macintosh, or Linux system

    Extensible Infrastructure for Browsing and Searching Abstracted Spacecraft Data

    Get PDF
    A computer program has been developed to provide a common interface for all space mission data, and allows different types of data to be displayed in the same context. This software provides an infrastructure for representing any type of mission data

    Leveraging open-source software in the design and development process

    No full text
    This paper presents a case study of the NASA Ames Research Center HCI Group’s design and development of a problem reporting system for NASA’s next generation vehicle (to replace the shuttle) based on the adaptation of an open source software application. We focus on the criteria used for selecting a specific system (Bugzilla) and discuss the outcomes of our project including eventual extensibility and maintainability. Finally, we address whether our experience may generalize considering where Bugzilla lies in the larger quantitative picture of current open source software projects

    Targeting and Localization for Mars Rover Operations

    No full text
    In this work we discuss how the quality of localization knowledge impacts the remote operation of rovers on the surface of Mars. We look at the techniques of localization estimation used in the Mars Pathfinder and Mars Exploration Rover missions. We examine the motivation behind the modes of targeting for different types of activities, such as navigation, remote science, and in situ science. We discuss the virtues and shortcomings of existing approaches and new improvements in the latest operations tools used to support the Mars Exploration Rover missions and rover technology development tasks at the Jet Propulsion Laboratory. We conclude with future directions we plan to explore in improving the localization knowledge available for operations and more effective targeting of rovers and their instrument payloads

    Overview and Results From the Mars 2020 Perseverance Rover's First Science Campaign on the Jezero Crater Floor

    No full text
    International audienceThe Mars 2020 Perseverance rover landed in Jezero crater on 18 February 2021. After a 100-sol period of commissioning and the Ingenuity Helicopter technology demonstration, Perseverance began its first science campaign to explore the enigmatic Jezero crater floor, whose igneous or sedimentary origins have been much debated in the scientific community. This paper describes the campaign plan developed to explore the crater floor's Máaz and Séítah formations and summarizes the results of the campaign between sols 100-379. By the end of the campaign, Perseverance had traversed more than 5 km, created seven abrasion patches, and sealed nine samples and a witness tube. Analysis of remote and proximity science observations show that the Máaz and Séítah formations are igneous in origin and composed of five and two geologic members, respectively. The Séítah formation represents the olivine-rich cumulate formed from differentiation of a slowly cooling melt or magma body, and the Máaz formation likely represents a separate series of lava flows emplaced after Séítah. The Máaz and Séítah rocks also preserve evidence of multiple episodes of aqueous alteration in secondary minerals like carbonate, Fe/Mg phyllosilicates, sulfates, and perchlorate, and surficial coatings. Post-emplacement processes tilted the rocks near the Máaz-Séítah contact and substantial erosion modified the crater floor rocks to their present-day expressions. Results from this crater floor campaign, including those obtained upon return of the collected samples, will help to build the geologic history of events that occurred in Jezero crater and provide time constraints on the formation of the Jezero delta. Plain Language Summary The Mars 2020 Perseverance rover, along with the Ingenuity Helicopter technology demonstration, landed in Jezero crater, Mars on 18 February 2021. Here, we detail results from the first science campaign of the mission, the purpose of which was to explore the enigmatic Jezero crater floor. By the end of the campaign, Perseverance traversed more than 5 km, created seven abrasion patches, SUN ET AL
    corecore