8 research outputs found

    Missing-in-metastasis and IRSp53 deform PI(4,5)P-2-rich membranes by an inverse BAR domain-like mechanism

    Get PDF
    The actin cytoskeleton plays a fundamental role in various motile and morphogenetic processes involving membrane dynamics. We show that actin-binding proteins MIM (missing-in-metastasis) and IRSp53 directly bind PI(4,5)P-2-rich membranes and deform them into tubular structures. This activity resides in the N-terminal IRSp53/MIM domain (IMD) of these proteins, which is structurally related to membrane-tubulating BAR (Bin/amphiphysin/Rvs) domains. We found that because of a difference in the geometry of the PI(4,5)P-2-binding site, IMDs induce a membrane curvature opposite that of BAR domains and deform membranes by binding to the interior of the tubule. This explains why IMD proteins induce plasma membrane protrusions rather than invaginations. We also provide evidence that the membrane-deforming activity of IMDs, instead of the previously proposed F-actin - bundling or GTPase-binding activities, is critical for the induction of the filopodia/microspikes in cultured mammalian cells. Together, these data reveal that interplay between actin dynamics and a novel membrane-deformation activity promotes cell motility and morphogenesis

    Molecular Mechanisms of Membrane Deformation by I-BAR Domain Proteins

    Get PDF
    Conclusions: These data define I-BAR domain as a functional member of the BAR domain superfamily and unravel the mechanisms by which I-BAR domains deform membranes to induce filopodia in cells. Furthermore, our work reveals unexpected divergence in the mechanisms by which evolutionarily distinct groups of I-BAR domains interact with PI(4,5)P(2)-rich membranes

    Variations in T Cell Transcription Factor Sequence and Expression Associated with Resistance to the Sheep Nematode Teladorsagia circumcincta

    Get PDF
    This study used selected lambs that varied in their resistance to the gastrointestinal parasite Teladorsagia circumcincta. Infection over 12 weeks identified susceptible (high adult worm count, AWC; high fecal egg count, FEC; low body weight, BW; low IgA) and resistant sheep (no/low AWC and FEC, high BW and high IgA). Resistance is mediated largely by a Th2 response and IgA and IgE antibodies, and is a heritable characteristic. The polarization of T cells and the development of appropriate immune responses is controlled by the master regulators, T-bet (TBX21), GATA-3 (GATA3), RORγt (RORC2) and RORα (RORA); and several inflammatory diseases of humans and mice are associated with allelic or transcript variants of these transcription factors. This study tested the hypothesis that resistance of sheep to T. circumcincta is associated with variations in the structure, sequence or expression levels of individual master regulator transcripts. We have identified and sequenced one variant of sheep TBX21, two variants of GATA3 and RORC2 and five variants of RORA from lymph node mRNA. Relative RT-qPCR analysis showed that TBX21, GATA3 and RORC2 were not significantly differentially-expressed between the nine most resistant (AWC, 0; FEC, 0) and the nine most susceptible sheep (AWC, mean 6078; FEC, mean 350). Absolute RT-qPCR on 29 all 45 animals identified RORAv5 as being significantly differentially-expressed (p = 0.038) 30 between resistant, intermediate and susceptible groups; RORAv2 was not differentially- 31 expressed (p = 0.77). Spearman’s rank analysis showed that RORAv5 transcript copy number 32 was significantly negatively correlated with parameters of susceptibility, AWC and FEC; and 33 was positively correlated with BW. RORAv2 was not correlated with AWC, FEC or BW but 34 was significantly negatively correlated with IgA antibody levels [corrected]. This study identifies the full length RORA variant (RORAv5) as important in controlling the protective immune response to T. circumcincta infection in sheep
    corecore