81 research outputs found

    Agent-based modelling - A methodology for the analysis of qualitative development processes

    Get PDF
    The tremendous development of an easy access to computational power within the last 30 years has led to the widespread use of numerical approaches in almost all scientific disciplines. The first generation of simulation models was rather focused on stylized empirical phenomena. With agent-based modelling, however, the trade-off between simplicity in modelling and taking into account the complexity of the socio-economic reality has been enhanced to a large extent. This paper serves as a basic instruction on how to model qualitative change using an agent-based modelling procedure. The necessity to focus on qualitative change is discussed, agent-based modelling is explained and finally an example is given to show the basic simplicity in modelling.agent-based modelling, methodology, evolutionary economics, qualitative change

    An Evolutionary Approach to the Theory of Entrepreneurship

    Get PDF
    The building blocks of our model are bounded-rational actors with specific sets of endowments: 'entrepreneurial spirit', human capital and venture capital. The entrepreneurial behavior to found a firm is triggered by the individuals' endowments, their social network and the evaluation of the economic situation. Bandwagon effects occur when high growth rates in emerging markets increase firm entries and firm entries in return increase growth rates until competition unfolds its selective power. The firms' survivability is determined by its founders endowments and its competitiveness. If actors are right or wrong in evaluating their economic situation and their consequent decisions is proven ex post. Thus, there will be winners and losers.entrepreneurship, human capital, venture capital, social networks, evolutionary economics, swarms of innovations

    Diffusion-jump model for the combined Brownian and Neel relaxation dynamics of ferrofluids in the presence of external fields and flow

    Get PDF
    Relaxation of suspended magnetic nanoparticles occurs via Brownian rotational diffusion of the particle as well as internal magnetization dynamics. The latter is often modeled by the stochastic Landau-Lifshitz equation, but its numerical treatment becomes prohibitively expensive in many practical applications due to a time-scale separation between fast, Larmor-type precession and slow, barrier-crossing dynamics. Here, a diffusion-jump model is proposed to take advantage of the time-scale separation and to approximate barrier-crossings as thermally activated jump processes that occur alongside rotational diffusion. The predictions of our diffusion-jump model are compared to reference results obtained by solving the stochastic Landau-Lifshitz equation coupled to rotational Brownian motion. Good agreement is found in the regime of high energy barriers where Neel relaxation can be considered a thermally activated rare event. While many works in the field have neglected N\'eel relaxation altogether, our approach opens the possibility to efficiently include Neel relaxation also into interacting many-particle models

    Local synchronization of resting-state dynamics encodes Gray's trait Anxiety

    Get PDF
    The Behavioral Inhibition System (BIS) as defined within the Reinforcement Sensitivity Theory (RST) modulates reactions to stimuli indicating aversive events. Gray’s trait Anxiety determines the extent to which stimuli activate the BIS. While studies have identified the amygdala-septo-hippocampal circuit as the key-neural substrate of this system in recent years and measures of resting-state dynamics such as randomness and local synchronization of spontaneous BOLD fluctuations have recently been linked to personality traits, the relation between resting-state dynamics and the BIS remains unexplored. In the present study, we thus examined the local synchronization of spontaneous fMRI BOLD fluctuations as measured by Regional Homogeneity (ReHo) in the hippocampus and the amygdala in twenty-seven healthy subjects. Correlation analyses showed that Gray’s trait Anxiety was significantly associated with mean ReHo in both the amygdala and the hippocampus. Specifically, Gray’s trait Anxiety explained 23% and 17% of resting-state ReHo variance in the left amygdala and the left hippocampus, respectively. In summary, we found individual differences in Gray’s trait Anxiety to be associated with ReHo in areas previously associated with BIS functioning. Specifically, higher ReHo in resting-state neural dynamics corresponded to lower sensitivity to punishment scores both in the amygdala and the hippocampus. These findings corroborate and extend recent findings relating resting-state dynamics and personality while providing first evidence linking properties of resting-state fluctuations to Gray’s BIS

    Long-axial field-of-view PET/CT: perspectives and review of a revolutionary development in nuclear medicine based on clinical experience in over 7000 patients.

    Get PDF
    Recently introduced long-axial field-of-view (LAFOV) PET/CT systems represent one of the most significant advancements in nuclear medicine since the advent of multi-modality PET/CT imaging. The higher sensitivity exhibited by such systems allow for reductions in applied activity and short duration scans. However, we consider this to be just one small part of the story: Instead, the ability to image the body in its entirety in a single FOV affords insights which standard FOV systems cannot provide. For example, we now have the ability to capture a wider dynamic range of a tracer by imaging it over multiple half-lives without detrimental image noise, to leverage lower radiopharmaceutical doses by using dual-tracer techniques and with improved quantification. The potential for quantitative dynamic whole-body imaging using abbreviated protocols potentially makes these techniques viable for routine clinical use, transforming PET-reporting from a subjective analysis of semi-quantitative maps of radiopharmaceutical uptake at a single time-point to an accurate and quantitative, non-invasive tool to determine human function and physiology and to explore organ interactions and to perform whole-body systems analysis. This article will share the insights obtained from 2 years' of clinical operation of the first Biograph Vision Quadra (Siemens Healthineers) LAFOV system. It will also survey the current state-of-the-art in PET technology. Several technologies are poised to furnish systems with even greater sensitivity and resolution than current systems, potentially with orders of magnitude higher sensitivity. Current barriers which remain to be surmounted, such as data pipelines, patient throughput and the hindrances to implementing kinetic analysis for routine patient care will also be discussed

    Rapid and simple TLC-densitometric method for assay of clobetasol propionate in topical solution

    Get PDF
    A rapid, simple to use and low-cost thin-layer chromatographic procedure in normal phase system with densitometric detection at 246 nm was carefully validated according to the International Conference on Harmonisation (ICH) guidelines for assay of clobetasol propionate in topical solution containing clobetasol propionate in quantity 0.50 mg/mL. The adopted thin-layer chromatographic (TLC)-densitometric procedure could effectively separate clobetasol propionate from its related compound, namely clobetasol. It is linear for clobetasol propionate in the range of 0.188 5 g/spot. The limit of detection (LOD) and limit of quantification (LOQ) value is 0.061 and 0.186 g/spot, respectively. Accuracy of proposed procedure was evaluated by recovery test. The mean recovery of studied clobetasol propionate ranges from 98.7 to 101.0%. The coefficient of variation (CV, %) obtained during intra-day and inter-day studies, which was less than 2% (0.40 1.17%), confirms the precision of described method. The assay value of clobetasol propionate is consistent with the pharmacopoeial requirements. In conclusion, it can be suitable as a simple and economic procedure for routine quality control laboratories of clobetasol propionate in topical solution

    Multiparametric Characterization of Intracranial Gliomas Using Dynamic [18F]FET-PET and Magnetic Resonance Spectroscopy.

    Get PDF
    Both static and dynamic O-(2-[18F]fluoroethyl)-l-tyrosine-(FET)-PET and 1H magnetic resonance spectroscopy (MRS) are useful tools for grading and prognostication in gliomas. However, little is known about the potential of multimodal imaging comprising both procedures. We therefore acquired NAA/Cr and Cho/Cr ratios in multi-voxel MRS as well as FET-PET parameters in 67 glioma patients and determined multiparametric parameter combinations. Using receiver operating characteristics, differentiation between low-grade and high-grade glioma was possible by static FET-PET (area under the curve (AUC) 0.86, p = 0.001), time-to-peak (TTP; AUC 0.79, p = 0.049), and using the Cho/Cr ratio (AUC 0.72, p = 0.039), while the multimodal analysis led to improved discrimination with an AUC of 0.97 (p = 0.001). In order to distinguish glioblastoma from non-glioblastoma, MRS (NAA/Cr ratio, AUC 0.66, p = 0.031), and dynamic FET-PET (AUC 0.88, p = 0.001) were superior to static FET imaging. The multimodal analysis increased the accuracy with an AUC of 0.97 (p < 0.001). In the survival analysis, PET parameters, but not spectroscopy, were significantly correlated with overall survival (OS, static PET p = 0.014, TTP p = 0.012), still, the multiparametric analysis, including MRS, was also useful for the prediction of OS (p = 0.002). In conclusion, FET-PET and MRS provide complementary information to better characterize gliomas before therapy, which is particularly interesting with respect to the increasing use of hybrid PET/MRI for brain tumors

    Predictive value of clinical and 18F-FDG-PET/CT derived imaging parameters in patients undergoing neoadjuvant chemoradiation for esophageal squamous cell carcinoma.

    Get PDF
    Aim of this study was to validate the prognostic impact of clinical parameters and baseline 18F-FDG-PET/CT derived textural features to predict histopathologic response and survival in patients with esophageal squamous cell carcinoma undergoing neoadjuvant chemoradiation (nCRT) and surgery. Between 2005 and 2014, 38 ESCC were treated with nCRT and surgery. For all patients, the 18F-FDG-PET-derived parameters metabolic tumor volume (MTV), SUVmax, contrast and busyness were calculated for the primary tumor using a SUV-threshold of 3. The parameter uniformity was calculated using contrast-enhanced computed tomography. Based on histopathological response to nCRT, patients were classified as good responders (< 10% residual tumor) (R) or non-responders (≥ 10% residual tumor) (NR). Regression analyses were used to analyse the association of clinical parameters and imaging parameters with treatment response and overall survival (OS). Good response to nCRT was seen in 27 patients (71.1%) and non-response was seen in 11 patients (28.9%). Grading was the only parameter predicting response to nCRT (Odds Ratio (OR) = 0.188, 95% CI: 0.040-0.883; p = 0.034). No association with histopathologic treatment response was seen for any of the evaluated imaging parameters including SUVmax, MTV, busyness, contrast and uniformity. Using multivariate Cox-regression analysis, the heterogeneity parameters busyness (Hazard Ratio (HR) = 1.424, 95% CI: 1.044-1.943; p = 0.026) and contrast (HR = 6.678, 95% CI: 1.969-22.643; p = 0.002) were independently associated with OS, while no independent association with OS was seen for SUVmax and MTV. In patients with ESCC undergoing nCRT and surgery, baseline 18F-FDG-PET/CT derived parameters could not predict histopathologic response to nCRT. However, the PET/CT derived features busyness and contrast were independently associated with OS and should be further investigated
    • …
    corecore