24 research outputs found

    Weyl approach to representation theory of reflection equation algebra

    Full text link
    The present paper deals with the representation theory of the reflection equation algebra, connected with a Hecke type R-matrix. Up to some reasonable additional conditions the R-matrix is arbitrary (not necessary originated from quantum groups). We suggest a universal method of constructing finite dimensional irreducible non-commutative representations in the framework of the Weyl approach well known in the representation theory of classical Lie groups and algebras. With this method a series of irreducible modules is constructed which are parametrized by Young diagrams. The spectrum of central elements s(k)=Tr_q(L^k) is calculated in the single-row and single-column representations. A rule for the decomposition of the tensor product of modules into the direct sum of irreducible components is also suggested.Comment: LaTeX2e file, 27 pages, no figure

    Characteristic Relations for Quantum Matrices

    Full text link
    General algebraic properties of the algebras of vector fields over quantum linear groups GLq(N)GL_q(N) and SLq(N)SL_q(N) are studied. These quantum algebras appears to be quite similar to the classical matrix algebra. In particular, quantum analogues of the characteristic polynomial and characteristic identity are obtained for them. The qq-analogues of the Newton relations connecting two different generating sets of central elements of these algebras (the determinant-like and the trace-like ones) are derived. This allows one to express the qq-determinant of quantized vector fields in terms of their qq-traces.Comment: 11 pages, latex, an important reference [16] added

    Spectral parameterization for the power sums of quantum supermatrix

    Get PDF
    A parameterization for the power sums of GL(m|n) type quantum (super)matrix is obtained in terms of it's spectral values.Comment: 12 pages. Submitted to the Proceedings of the international workshop on Classical and Quantum Integrable Systems, January 21-24, 2008, Protvino, Russi

    Manin matrices and Talalaev's formula

    Full text link
    We study special class of matrices with noncommutative entries and demonstrate their various applications in integrable systems theory. They appeared in Yu. Manin's works in 87-92 as linear homomorphisms between polynomial rings; more explicitly they read: 1) elements in the same column commute; 2) commutators of the cross terms are equal: [Mij,Mkl]=[Mkj,Mil][M_{ij}, M_{kl}]=[M_{kj}, M_{il}] (e.g. [M11,M22]=[M21,M12][M_{11}, M_{22}]=[M_{21}, M_{12}]). We claim that such matrices behave almost as well as matrices with commutative elements. Namely theorems of linear algebra (e.g., a natural definition of the determinant, the Cayley-Hamilton theorem, the Newton identities and so on and so forth) holds true for them. On the other hand, we remark that such matrices are somewhat ubiquitous in the theory of quantum integrability. For instance, Manin matrices (and their q-analogs) include matrices satisfying the Yang-Baxter relation "RTT=TTR" and the so--called Cartier-Foata matrices. Also, they enter Talalaev's hep-th/0404153 remarkable formulas: det(∂z−LGaudin(z))det(\partial_z-L_{Gaudin}(z)), det(1-e^{-\p}T_{Yangian}(z)) for the "quantum spectral curve", etc. We show that theorems of linear algebra, after being established for such matrices, have various applications to quantum integrable systems and Lie algebras, e.g in the construction of new generators in Z(U(gln^))Z(U(\hat{gl_n})) (and, in general, in the construction of quantum conservation laws), in the Knizhnik-Zamolodchikov equation, and in the problem of Wick ordering. We also discuss applications to the separation of variables problem, new Capelli identities and the Langlands correspondence.Comment: 40 pages, V2: exposition reorganized, some proofs added, misprints e.g. in Newton id-s fixed, normal ordering convention turned to standard one, refs. adde

    Representation theory of (modified) reflection equation algebra of GL(m\vert n) type

    No full text
    corecore