1,540 research outputs found

    Bandverbindungen der Dornfortsätze der Wirbelsäule

    Get PDF
    In the cervical region the fibres of the interspinous and nuchal ligaments pass in an anteroc ranial direction: they act against diminishing of the cervical lordosis. In the thoracic region, longitudinal bundles of fibres connect the tops of the spinous processes; they act against an augmentation of the thoracal kyphosis. Between thoracal kyphosis and lumbal lordosis there is no exact course of the fibres of the interspinous ligts. ("thorakolumbaler "Übergangsbereich"). In the lumbar spine the fibres of the interspinous ligts., being very strong, pass in a posterocranial direction. They have the function of limitation the range of flexion ventrally and of limiting backwards - shifting of the cranial vertebra in dorsal-flexion. In the lumbosacral segment additional fibres, arising from the top of the 5th lumbar spinous process, pass in a posterocaudal direction and interlace with the thoracolumbar fascia , whose fibres form — below the 4 th lumbarvertebra — ascissor - latticed structure. The supraspinous ligt. lies superficially to the thoracolumbar fascia. Its fibres pass several spinous processes. I t ends caudally at the 4th lumbar spinous process

    A comparative study of stress and depression in a psychoeducational setting

    Get PDF

    Performance evaluation of continuity connections for use in modular construction

    Get PDF
    With the growing concern of our nation’s aging infrastructure, several new ideas and concepts are being developed and implemented throughout several state departments. These turnkey innovative designs are being introduced into a rapid renewal technique called Accelerated Bridge Construction (ABC). ABC was developed under the Second Strategic Highway Research Program (SHRP 2), which targeted strategic solutions to improve several aspects of transportation including, safety, congestion, and renewal methods for roads and bridges. Prefabricated bridge elements and systems (PBES) is one technique often associated with ABC. It incorporates the use of prebuilt modules, which include part of the girder system and a portion of the bridge deck. One of the most critical components in a modular system are the closure pours required to connect each prefabricated module. High performance materials (HPM) such as Ultra High Performance Concrete (UHPC) are often being used for the longitudinal connections today. The transverse closure joints are used over the piers and connect each adjacent module. In this particular study, a steel compression block was placed on the piers and positioned tightly between the two adjacent modules to attempt to reduce the compressive forces that were transferred through the diaphragm. To assess the performance of the longitudinal and transverse joint details that were designed for use on a demonstration bridge, several specimens were constructed with a replica of the joint detail and ran through a series of lab tests to determine the strength and constructability. There were also specimens designed and constructed as a standard cast-in-place bridge deck that served as a baseline for comparison purposes. It was proven that the performance of the longitudinal joint detail was very consistent to the continuity that is provided by a monolithic slab. Two different materials were tested for use as the longitudinal joint material, Ductal UHPC and Korean UHPC. Both materials had comparable results throughout testing. As for the transverse joints, the inclusion of the steel compression block showed to effectively alter the performance as the specimen was able to withstand a larger moment prior to ultimate failure

    A Coherent Spin-Photon Interface in Silicon

    Full text link
    Electron spins in silicon quantum dots are attractive systems for quantum computing due to their long coherence times and the promise of rapid scaling using semiconductor fabrication techniques. While nearest neighbor exchange coupling of two spins has been demonstrated, the interaction of spins via microwave frequency photons could enable long distance spin-spin coupling and "all-to-all" qubit connectivity. Here we demonstrate strong-coupling between a single spin in silicon and a microwave frequency photon with spin-photon coupling rates g_s/(2\pi) > 10 MHz. The mechanism enabling coherent spin-photon interactions is based on spin-charge hybridization in the presence of a magnetic field gradient. In addition to spin-photon coupling, we demonstrate coherent control of a single spin in the device and quantum non-demolition spin state readout using cavity photons. These results open a direct path toward entangling single spins using microwave frequency photons

    Flopping-mode electric dipole spin resonance

    Full text link
    Traditional approaches to controlling single spins in quantum dots require the generation of large electromagnetic fields to drive many Rabi oscillations within the spin coherence time. We demonstrate "flopping-mode" electric dipole spin resonance, where an electron is electrically driven in a Si/SiGe double quantum dot in the presence of a large magnetic field gradient. At zero detuning, charge delocalization across the double quantum dot enhances coupling to the drive field and enables low power electric dipole spin resonance. Through dispersive measurements of the single electron spin state, we demonstrate a nearly three order of magnitude improvement in driving efficiency using flopping-mode resonance, which should facilitate low power spin control in quantum dot arrays

    IR-Singularities in Noncommutative Perturbative Dynamics?

    Get PDF
    We analyse the IR-singularities that appear in a noncommutative scalar quantum field theory on E4\mathcal{E}_4. We demonstrate with the help of the quadratic one-loop effective action and an appropriate field redefinition that no IR-singularities exist. No new degrees of freedom are needed to describe the UV/IR-mixing.Comment: 6 pages, amsLaTe

    Multiple cracking events in metal bi-layers on polymer substrates

    Get PDF
    Metal films on polymer substrates are used in a variety of applications such as flexible electronics, sensors, medical devices and aerospace including multilayer insulators and surface mirrors on satellites. A common way to assess the mechanical behavior of metal-polymer systems is with fragmentation testing, which strains the system under uniaxial tension. During straining cracks or localized deformation (necks) develop perpendicular to the loading direction and buckle delaminations occur parallel to the loading. From the crack spacing the fracture behavior can be determined and the interface adhesion energy can be measured from the buckles. Fragmentation testing has been used on single and multilayer films and has shown that brittle adhesion layers next to the substrate, can cause brittle cracking of normally ductile overlying films. A similar fracture behavior was observed here for the Inconel-Ag-Teflon system, but in this system, the top 30 nm Inconel film is the brittle layer inducing brittle cracking of the underlying 150 nm Ag film. Inconel acts as a corrosion protection for the Ag layer in surface mirrors on satellites in low earth orbit, where the material should not develop cracks upon mechanical loading. Observation of the Inconel surface during in-situ tensile straining revealed crack formation in the Inconel layer at less than 1% strain, which continues with increasing strain (primary cracks). At approximately 3% strain, the primary cracks in the Inconel overcoat act as stress concentrators and generate through thickness cracks in the Ag film (secondary cracks). The primary Inconel cracks had a saturation spacing of 1.5 µm, while the secondary Inconel-Ag saturation crack spacing was much larger at 12 µm. In-situ fragmentation experiments performed through the transparent Teflon substrate revealed only the secondary through thickness cracks and cross-sectional focused ion beam characterization provides further evidence for the two-stage cracking behavior. Using the shear lag model the interfacial shear stresses of the Inconel and Inconel-Ag layers were determined from the saturation crack spacings and observed fracture strains. These results further illustrate that brittle layers at any position are detrimental to the functionality of multi-layered metal-polymer systems and should be carefully considered for any application. Please click Additional Files below to see the full abstract
    • …
    corecore