35 research outputs found

    Enhanced IL-2 in early life limits the development of TFH and protective antiviral immunity

    Get PDF
    T follicular helper cell (TFH)-dependent antibody responses are critical for long-term immunity. Antibody responses are diminished in early life, limiting long-term protective immunity and allowing prolonged or recurrent infection, which may be important for viral lung infections that are highly prevalent in infancy. In a murine model using respiratory syncytial virus (RSV), we show that TFH and the high-affinity antibody production they promote are vital for preventing disease on RSV reinfection. Following a secondary RSV infection, TFH-deficient mice had significantly exacerbated disease characterized by delayed viral clearance, increased weight loss, and immunopathology. TFH generation in early life was compromised by heightened IL-2 and STAT5 signaling in differentiating naive T cells. Neutralization of IL-2 during early-life RSV infection resulted in a TFH-dependent increase in antibody-mediated immunity and was sufficient to limit disease severity upon reinfection. These data demonstrate the importance of TFH in protection against recurrent RSV infection and highlight a mechanism by which this is suppressed in early life

    A T cell-myeloid IL-10 axis regulates pathogenic IFN-γ-dependent immunity in a mouse model of type 2-low asthma

    Get PDF
    Background Although originally defined as a type 2 (T2) immune-mediated condition, non-T2 cytokines, such as IFN-γ and IL-17A, have been implicated in asthma pathogenesis, particularly severe disease. IL-10 regulates T helper (Th) cell phenotypes and can dampen T2 immunity to allergens, but its functions in controlling non-T2 cytokine responses in asthma are unclear. Objective: Determine how IL-10 regulates the balance of Th cell responses to inhaled allergen. Methods Allergic airway disease (AAD) was induced in wild-type, IL-10 reporter and conditional IL-10 or IL-10 receptor α (IL-10Rα) knockout mice, by repeated intranasal administration of house dust mite (HDM). IL-10 and IFN-γ signalling were disrupted using blocking antibodies. Results Repeated HDM inhalation induced a mixed IL-13/IL-17A response and accumulation of IL-10-producing FoxP3- effector CD4+ T cells in the lungs. Ablation of T cell-derived IL-10 increased the IFN-γ and IL-17A response to HDM, reducing IL-13 levels and airway eosinophilia without affecting IgE or airway hyperresponsiveness. The increased IFN-γ response could be recapitulated by IL-10Rα deletion in CD11c+ myeloid cells or local IL-10Rα blockade. Disruption of the T cell-myeloid IL-10 axis resulted in elevated pulmonary monocyte-derived dendritic cell numbers and increased IFN-γ-dependent expression of CXCR3 ligands by airway macrophages, suggestive of a feedforward loop of Th1 cell recruitment. Augmented IFN-γ responses in the HDM AAD model were accompanied by increased disruption of airway epithelium, which was reversed by therapeutic blockade of IFN-γ. Conclusions IL-10 from effector T cells signals to CD11c+ myeloid cells to suppress an atypical and pathogenic IFN-γ response to inhaled HDM

    Neutrophils restrain allergic airway inflammation by limiting ILC2 function and monocyte-dendritic cell antigen presentation

    Get PDF
    Neutrophil mobilization, recruitment, and clearance must be tightly regulated as overexuberant neutrophilic inflammation is implicated in the pathology of chronic diseases, including asthma. Efforts to target neutrophils therapeutically have failed to consider their pleiotropic functions and the implications of disrupting fundamental regulatory pathways that govern their turnover during homeostasis and inflammation. Using the house dust mite (HDM) model of allergic airway disease, we demonstrate that neutrophil depletion unexpectedly resulted in exacerbated T helper 2 (T 2) inflammation, epithelial remodeling, and airway resistance. Mechanistically, this was attributable to a marked increase in systemic granulocyte colony-stimulating factor (G-CSF) concentrations, which are ordinarily negatively regulated in the periphery by transmigrated lung neutrophils. Intriguingly, we found that increased G-CSF augmented allergic sensitization in HDM-exposed animals by directly acting on airway type 2 innate lymphoid cells (ILC2s) to elicit cytokine production. Moreover, increased systemic G-CSF promoted expansion of bone marrow monocyte progenitor populations, which resulted in enhanced antigen presentation by an augmented peripheral monocyte-derived dendritic cell pool. By modeling the effects of neutrophil depletion, our studies have uncovered previously unappreciated roles for G-CSF in modulating ILC2 function and antigen presentation. More broadly, they highlight an unexpected regulatory role for neutrophils in limiting T 2 allergic airway inflammation

    Sodium-coupled Monocarboxylate Transporters in Normal Tissues and in Cancer

    Get PDF
    SLC5A8 and SLC5A12 are sodium-coupled monocarboxylate transporters (SMCTs), the former being a high-affinity type and the latter a low-affinity type. Both transport a variety of monocarboxylates in a Na+-coupled manner. They are expressed in the gastrointestinal tract, kidney, thyroid, brain, and retina. SLC5A8 is localized to the apical membrane of epithelial cells lining the intestinal tract and proximal tubule. In the brain and retina, its expression is restricted to neurons and the retinal pigment epithelium. The physiologic functions of SLC5A8 include absorption of short-chain fatty acids in the colon and small intestine, reabsorption of lactate and pyruvate in the kidney, and cellular uptake of lactate and ketone bodies in neurons. It also transports the B-complex vitamin nicotinate. SLC5A12 is also localized to the apical membrane of epithelial cells lining the intestinal tract and proximal tubule. In the brain and retina, its expression is restricted to astrocytes and Müller cells. SLC5A8 also functions as a tumor suppressor; its expression is silenced in tumors of colon, thyroid, stomach, kidney, and brain. The tumor-suppressive function is related to its ability to mediate concentrative uptake of butyrate, propionate, and pyruvate, all of which are inhibitors of histone deacetylases. SLC5A8 can also transport a variety of pharmacologically relevant monocarboxylates, including salicylates, benzoate, and γ-hydroxybutyrate. Non-steroidal anti-inflammatory drugs such as ibuprofen, ketoprofen, and fenoprofen, also interact with SLC5A8. These drugs are not transportable substrates for SLC5A8, but instead function as blockers of the transporter. Relatively less is known on the role of SLC5A12 in drug transport

    Hydroimidazolone Modification of the Conserved Arg12 in Small Heat Shock Proteins: Studies on the Structure and Chaperone Function Using Mutant Mimics

    Get PDF
    Methylglyoxal (MGO) is an α-dicarbonyl compound present ubiquitously in the human body. MGO reacts with arginine residues in proteins and forms adducts such as hydroimidazolone and argpyrimidine in vivo. Previously, we showed that MGO-mediated modification of αA-crystallin increased its chaperone function. We identified MGO-modified arginine residues in αA-crystallin and found that replacing such arginine residues with alanine residues mimicked the effects of MGO on the chaperone function. Arginine 12 (R12) is a conserved amino acid residue in Hsp27 as well as αA- and αB-crystallin. When treated with MGO at or near physiological concentrations (2–10 µM), R12 was modified to hydroimidazolone in all three small heat shock proteins. In this study, we determined the effect of arginine substitution with alanine at position 12 (R12A to mimic MGO modification) on the structure and chaperone function of these proteins. Among the three proteins, the R12A mutation improved the chaperone function of only αA-crystallin. This enhancement in the chaperone function was accompanied by subtle changes in the tertiary structure, which increased the thermodynamic stability of αA-crystallin. This mutation induced the exposure of additional client protein binding sites on αA-crystallin. Altogether, our data suggest that MGO-modification of the conserved R12 in αA-crystallin to hydroimidazolone may play an important role in reducing protein aggregation in the lens during aging and cataract formation

    Mouse cytomegalovirus infection overrules T regulatory cell suppression on natural killer cells

    Get PDF
    Background Cytomegalovirus establishes lifelong persistency in the host and leads to life threatening situations in immunocompromised patients. FoxP3+ T regulatory cells (Tregs) critically control and suppress innate and adaptive immune responses. However, their specific role during MCMV infection, especially pertaining to their interaction with NK cells, remains incompletely defined. Methods To understand the contribution of Tregs on NK cell function during acute MCMV infection, we infected Treg depleted and undepleted DEREG mice with WT MCMV and examined Treg and NK cell frequency, number, activation and effector function in vivo. Results Our results reveal an increased frequency of activated Tregs within the CD4+ T cell population shortly after MCMV infection. Specific depletion of Tregs in DEREG mice under homeostatic conditions leads to an increase in NK cell number as well as to a higher activation status of these cells as compared with non-depleted controls. Interestingly, upon infection this effect on NK cells is completely neutralized in terms of cell frequency, CD69 expression and functionality with respect to IFN-γ production. Furthermore, composition of the NK cell population with regard to Ly49H expression remains unchanged. In contrast, absence of Tregs still boosts the general T cell response upon infection to a level comparable to the enhanced activation seen in uninfected mice. CD4+ T cells especially benefit from Treg depletion exhibiting a two-fold increase of CD69+ cells 40 h and IFN-γ+ cells 7 days p.i. while, MCMV infection per se induces robust CD8+ T cell activation which is also further augmented in Treg-depleted mice. Nevertheless, the viral burden in the liver and spleen remain unaltered upon Treg ablation during the course of infection. Conclusions Thus, MCMV infection abolishes Treg suppressing effects on NK cells whereas T cells benefit from their absence during acute infection. This study provides novel information in understanding the collaborative interaction between NK cells and Tregs during a viral infection and provides further knowledge that could be adopted in therapeutic setups to improve current treatment of organ transplant patients where modulation of Tregs is envisioned as a strategy to overcome transplant rejection

    Tregs in infection and vaccinology: heroes or traitors?

    Get PDF
    The development of effective vaccines against life‐threatening pathogens in human diseases represents one of the biggest challenges in biomedical science. Vaccines traditionally make use of the body's own immune armoury to combat pathogens. Yet, while our immune system is mostly effective in eliminating or controlling a diverse range of microorganisms, its responses are incomplete or somewhat limited in several other cases. How immune responses are restrained during certain infections has been a matter of debate for many years. The discovery of regulatory T cells (Tregs), an immune cell type that plays a central role in maintaining immune homeostasis and controlling appropriate immune responses, has shed light into many questions. Indeed, it has been proposed that while Tregs might be beneficial in preventing excessive tissue damage during infection, they might also favour pathogen persistence by restraining effector immune responses. In addition, Tregs are believed to limit immune responses upon vaccination. Different strategies have been pursued to circumvent Treg activity during immunization, but the lack of specific tools for their study has led sometimes to controversial conclusions. With the advent of novel mouse models that allow specific depletion and/or tracking of Treg populations in vivo, novel aspects of Treg biology during infection have been unravelled. In this review, we describe the new advances in understanding Treg biology during infection and evaluate Treg depletion as a novel adjuvant strategy for vaccination

    Failure of Oxysterols Such as Lanosterol to Restore Lens Clarity from Cataracts

    Get PDF
    The paradigm that cataracts are irreversible and that vision from cataracts can only be restored through surgery has recently been challenged by reports that oxysterols such as lanosterol and 25-hydroxycholesterol can restore vision by binding to αB-crystallin chaperone protein to dissolve or disaggregate lenticular opacities. To confirm this premise, in vitro rat lens studies along with human lens protein solubilization studies were conducted. Cataracts were induced in viable rat lenses cultured for 48 hours in TC-199 bicarbonate media through physical trauma, 10 mM ouabain as Na+/K+ ATPase ion transport inhibitor, or 1 mM of an experimental compound that induces water influx into the lens. Subsequent 48-hour incubation with 15 mM of lanosterol liposomes failed to either reverse these lens opacities or prevent the further progression of cataracts to the nuclear stage. Similarly, 3-day incubation of 47-year old human lenses in media containing 0.20 mM lanosterol or 60-year-old human lenses in 0.25 and 0.50 mM 25-hydroxycholesterol failed to increase the levels of soluble lens proteins or decrease the levels of insoluble lens proteins. These binding studies were followed up with in silico binding studies of lanosterol, 25-hydroxycholesterol, and ATP as a control to two wild type (2WJ7 and 2KLR) and one R120G mutant (2Y1Z) αB-crystallins using standard MOETM (Molecular Operating Environment) and Schrödinger’s Maestro software. Results confirmed that compared to ATP, both oxysterols failed to reach the acceptable threshold binding scores for good predictive binding to the αB-crystallins. In summary, all three studies failed to provide evidence that lanosterol or 25-hydroxycholesterol have either anti-cataractogenic activity or bind aggregated lens protein to dissolve cataracts

    Pulmonary group 2 innate lymphoid cell phenotype is context specific: Determining the effect of strain, location and stimuli

    Get PDF
    Group 2 innate lymphoid cells (ILC2s) are enriched at mucosal sites, including the lung, and play a central role in type 2 immunity and maintaining tissue homeostasis. As a result, since their discovery in 2010, research into ILC2s has increased markedly. Numerous strategies have been used to define ILC2s by flow cytometry, often utilizing different combinations of surface markers despite their expression being variable and context-dependent. In this study, we sought to generate a comprehensive characterization of pulmonary ILC2s, identifying stable and context specific markers from different pulmonary compartments following different airway exposures in different strains of mice. Our analysis revealed that pulmonary ILC2 surface marker phenotype is heterogeneous and is influenced by mouse strain, pulmonary location, in vivo treatment/exposure and ex vivo stimulation. Therefore, we propose that a lineage negative cell expressing CD45 and Gata3 defines an ILC2, and subsequent surface marker expression should be used to describe their phenotype in context-specific scenarios
    corecore