4,615 research outputs found
Summary of results of NASA F-15 flight research program
NASA conducted a multidisciplinary flight research program on the F-15 airplane. The program began in 1976 when two preproduction airplanes were obtained from the U.S. Air Force. Major projects involved stability and control, handling qualities, propulsion, aerodynamics, propulsion controls, and integrated propulsion-flight controls. Several government agencies and aerospace contractors were involved. In excess of 330 flights were flown, and over 85 papers and reports were published. This document describes the overall program, the projects, and the key results. The F-15 was demonstrated to be an excellent flight research vehicle, producing high-quality results
Oriental and Occidental Northern and Southern Portrait Types of the Midway Plaisance
A book of photography from the 1893 World\u27s Fair held in Chicago, IL. These images were collected of individual types of various nations from all parts of the world who represented, in the department of ethnology, the manners, customs, dress, religions, music, and other distinctive traits and peculiarities of the race. Collected by Prof. F.W. Putnam, of Harvard University, Chief of the Department of Ethnology at the World\u27s Columbian Exposition.https://digitalcommons.colum.edu/rarebooks/1003/thumbnail.jp
Measured noise reductions resulting from modified approach procedures for business jet aircraft
Five business jet airplanes were flown to determine the noise reductions that result from the use of modified approach procedures. The airplanes tested were a Gulfstream 2, JetStar, Hawker Siddeley 125-400, Sabreliner-60 and LearJet-24. Noise measurements were made 3, 5, and 7 nautical miles from the touchdown point. In addition to a standard 3 deg glide slope approach, a 4 deg glide slope approach, a 3 deg glide slope approach in a low-drag configuration, and a two-segment approach were flown. It was found that the 4 deg approach was about 4 EPNdB quieter than the standard 3 deg approach. Noise reductions for the low-drag 3 deg approach varied widely among the airplanes tested, with an average of 8.5 EPNdB on a fleet-weighted basis. The two-segment approach resulted in noise reductions of 7 to 8 EPNdB at 3 and 5 nautical miles from touchdown, but only 3 EPNdB at 7 nautical miles from touchdown when the airplanes were still in level flight prior to glide slope intercept. Pilot ratings showed progressively increasing workload for the 4 deg, low-drag 3 deg, and two-segment approaches
Performance improvements of a highly integrated digital electronic control system for an F-15 airplane
The NASA highly integrated digital electronic control (HIDEC) program is structured to conduct flight research into the benefits of integrating an aircraft flight control system with the engine control system. A brief description of the HIDEC system installed on an F-15 aircraft is provided. The adaptive engine control system (ADECS) mode is described in detail, together with simulation results and analyses that show the significant excess thrust improvements achievable with the ADECS mode. It was found that this increased thrust capability is accompanied by reduced fan stall margin and can be realized during flight conditions where engine face distortion is low. The results of analyses and simulations also show that engine thrust response is improved and that fuel consumption can be reduced. Although the performance benefits that accrue because of airframe and engine control integration are being demonstrated on an F-15 aircraft, the principles are applicable to advanced aircraft such as the advanced tactical fighter and advanced tactical aircraft
Semiempirical airframe noise prediction model and evaluation with flight data
A semiempirical maximum overall sound pressure level (OASPL) airframe noise model was derived. Noise radiated from aircraft wings was modeled on the trailing edge diffractes quadrupole sound theory. The acoustic dipole sound theory was used to model noise from the landing gear. The model was correlated with maximum OASPL flyover noise measurements obtained for three jet aircraft. One third octave band sound pressure level flyover data was correlated and interpreted
Landing approach airframe noise measurements and analysis
Flyover measurements of the airframe noise produced by the AeroCommander, JetStar, CV-990, and B-747 airplanes are presented for various landing approach configurations. Empirical and semiempirical techniques are presented to correlate the measured airframe noise with airplane design and aerodynamic parameters. Airframe noise for the jet-powered airplanes in the clean configuration (flaps and gear retracted) was found to be adequately represented by a function of airplane weight and the fifth power of airspeed. Results show the airframe noise for all four aircraft in the landing configuration (flaps extended and gear down) also varied with the fifth power of airspeed, but this noise level could not be represented by the addition of a constant to the equation for clean-configuration airframe noise
Mind and body, form and content: how not to do petitio principii analysis
Few theoretical insights have emerged from the extensive literature discussions of petitio principii argument. In particular, the pattern of petitio analysis has largely been one of movement between the two sides of a dichotomy, that of form and content. In this paper, I trace the basis of this dichotomy to a dualist conception of mind and world. I argue for the rejection of the form/content dichotomy on the ground that its dualist presuppositions generate a reductionist analysis of certain concepts which are central to the analysis of petitio argument. I contend, for example, that no syntactic relation can assimilate within its analysis the essentially holistic nature of a notion like justification. In this regard, I expound a form of dialectical criticism which has been frequently employed in the philosophical arguments of Hilary Putnam. Here the focus of analysis is upon the way in which the proponent of a position proceeds to explain or argue for his/her own particular theses. My conclusion points to the use of such dialectic within future analyses of petitio principii
Symplectic quantization, inequivalent quantum theories, and Heisenberg's principle of uncertainty
We analyze the quantum dynamics of the non-relativistic two-dimensional
isotropic harmonic oscillator in Heisenberg's picture. Such a system is taken
as toy model to analyze some of the various quantum theories that can be built
from the application of Dirac's quantization rule to the various symplectic
structures recently reported for this classical system. It is pointed out that
that these quantum theories are inequivalent in the sense that the mean values
for the operators (observables) associated with the same physical classical
observable do not agree with each other. The inequivalence does not arise from
ambiguities in the ordering of operators but from the fact of having several
symplectic structures defined with respect to the same set of coordinates. It
is also shown that the uncertainty relations between the fundamental
observables depend on the particular quantum theory chosen. It is important to
emphasize that these (somehow paradoxical) results emerge from the combination
of two paradigms: Dirac's quantization rule and the usual Copenhagen
interpretation of quantum mechanics.Comment: 8 pages, LaTex file, no figures. Accepted for publication in Phys.
Rev.
- …