329 research outputs found

    Pharmacokinetics of Scopolamine Intranasal Gel Formulation (INSCOP) During Antiorthostatic Bedrest

    Get PDF
    Space Motion Sickness (SMS) is experienced during early flight days of space missions and on reduced gravity simulation flights which require treatment with medications. Oral administration of scopolamine tablets is still a common practice to prevent SMS symptoms. Bioavailability of medications taken by mouth for SMS is often low and variable. Intranasal (IN) administration of medications has been reported to achieve higher and more reliable bioavailability than from an equivalent oral dose. In this FDA reviewed phase II clinical trial, we evaluated pharmacokinetics of an investigative new drug formulation, INSCOP during ambulatory (AMB) and antiorthostatic bedrest (HBR), a ground-based microgravity analog. Twelve subjects including 6 males and 6 females received 0.2 and 0.4 mg doses of INSCOP on separate days during AMB and ABR in a randomized, double blind cross over experimental design. Blood samples were collected at regular time intervals for 24 h post dose and analyzed for free scopolamine concentrations by an LC-MS-MS method. Pharmacokinetic parameters were calculated using concentration versus time data and compared between AMB and ABR conditions. Results indicated that maximum concentration and relative bioavailability increased marginally during ABR compared to AMB; differences in PK parameters between AMB and ABR were greater with 0.2 mg than with 0.4 mg dose. Gender specific differences in PK parameters was observed both during AMB and ABR with differences higher in females between the two conditions than in males. A significant observation is that while gender differences in PK appear to exist, the differences in primary PK parameters between AMB and ABR after IN administration, unlike oral administration, are minimal and may not be clinically significant for both genders

    Impact of Gender on Pharmocokinetics of Intranasal Scopolamine

    Get PDF
    Introduction: An intranasal gel dosage formulation of scopolamine (INSCOP) was developed for the treatment of Space Motion Sickness (SMS), which is commonly experienced by astronauts during space missions. The bioavailability and pharmacokinetics (PK) were evaluated under IND guidelines. Since information is lacking on the effect of gender on the PK of Scopolamine, we examined gender differences in PK parameters of INSCOP at three dose levels of 0.1, 0.2 and 0.4 mg. Methods: Plasma scopolamine concentrations as a function of time data were collected from twelve normal healthy human subjects (6 male/6 female) who participated in a fully randomized double blind crossover study. The PK parameters were derived using WinNonlin. Covariate analysis of PK profiles was performed using NONMEN and statistically compared using a likelihood ratio test on the difference of objective function value (OFV). Statistical significance for covariate analysis was set at P<0.05(OFV=3.84). Results: No significant difference in PK parameters between male and female subjects was observed with 0.1 and 0.2 mg doses. However, CL and Vd were significantly different between male and female subjects at the 0.4 mg dose. Results from population covariate modeling analysis indicate that a onecompartment PK model with first-order elimination rate offers best fit for describing INSCOP concentration-time profiles. The inclusion of sex as a covariate enhanced the model fitting (OFV=-4.1) owing to the genderdependent CL and Vd differences after the 0.4 mg dose. Conclusion: Statistical modeling of scopolamine concentration-time data suggests gender-dependent pharmacokinetics of scopolamine at the high dose level of 0.4 mg. Clearance of the parent compound was significantly faster and the volume of distribution was significantly higher in males than in females, As a result, including gender as a covariate to the pharmacokinetic model of scopolamine offers the best fit for PK modeling of the drug at dose of 0.4 mg or higher

    Clinical pharmacology and therapeutics

    Get PDF
    Pharmacotherapeutics is an important element of space medicine practice. Assessing health risks, developing countermeasures, selecting relevant supplies for medical kits and providing appropriate training for crew members on the use of medical kits prior to the mission start are all major contributors of mission success. In this chapter, the standards applicable to clinical pharmacy practice are discussed, and best practices recommended. A review of existing evidence on the incidence and management of clinical conditions that have occurred during space flight is presented along with results of research conducted of drugs under the influence of microgravity. Ground-based models, such as bed-rest and animal surrogate studies, supplement and validate clinical observations from space missions. Space flight is associated with morphological and profound physiological changes, including alterations in fluid, electrolytes, and gastrointestinal function capable of affecting the pharmacokinetics—primarily after oral administration of medications. Exposure to the space environment, particularly radiation, can also shorten the shelf life of many chemical preparations, potentially affecting their efficacy, altering their bioavailability. Special packaging, radiation insulation of the medical storage area, and periodic return of samples to determine pharmacologic activity of medications is possible in Low Earth Orbit, such as the International Space Station, which offers a unique test-bed environment. Information on the absorption, distribution, metabolism, and excretion of major drug categories in the space microgravity environment is incomplete. Since research evidence on pharmacotherapeutics in space is sparse, clinical practitioners rely primarily on observational and anecdotal evidence compiled from individual crew opinions gathered from prior missions

    Pharmacokinetic Modeling of Intranasal Scopolamine in Plasma Saliva and Urine

    Get PDF
    An intranasal gel formulation of scopolamine (INSCOP) was developed for the treatment of Space Motion Sickness. The bioavailability and pharmacokinetics (PK) were evaluated under the Food and Drug Administration guidelines for clinical trials for an Investigative New Drug (IND). The aim of this project was to develop a PK model that can predict the relationship between plasma, saliva and urinary scopolamine concentrations using data collected from the IND clinical trial with INSCOP. METHODS: Twelve healthy human subjects were administered three dose levels (0.1, 0.2 and 0.4 mg) of INSCOP. Serial blood, saliva and urine samples were collected between 5 min to 24 h after dosing and scopolamine concentrations measured by using a validated LC-MS-MS assay. Pharmacokinetic Compartmental models, using actual dosing and sampling times, were built using Phoenix (version 1.2). Model discrimination was performed, by minimizing the Akaike Information Criteria (AIC), maximizing the coefficient of determination (r) and by comparison of the quality of fit plots. RESULTS: The best structural model to describe scopolamine disposition after INSCOP administration (minimal AIC =907.2) consisted of one compartment for plasma, saliva and urine respectively that were inter-connected with different rate constants. The estimated values of PK parameters were compiled in Table 1. The model fitting exercises revealed a nonlinear PK for scopolamine between plasma and saliva compartments for K21, Vmax and Km. CONCLUSION: PK model for INSCOP was developed and for the first time it satisfactorily predicted the PK of scopolamine in plasma, saliva and urine after INSCOP administration. Using non-linear PK yielded the best structural model to describe scopolamine disposition between plasma and saliva compartments, and inclusion of non-linear PK resulted in a significant improved model fitting. The model can be utilized to predict scopolamine plasma concentration using saliva and/or urine data that allows non-invasive assessment of pharmacotherapeutics of scopolamine in space and other remote environments without requiring blood sampling

    Pharmacokinetic Modeling of Intranasal Scopolamine in Plasma Saliva and Urine

    Get PDF
    An intranasal gel dosage formulation of scopolamine (INSCOP) was developed for the treatment of Space Motion Sickness (SMS). The bioavailability and pharmacokinetics (PK) were evaluated under IND (Investigational New Drug) guidelines. The aim of the project was to develop a PK model that can predict the relationships among plasma, saliva and urinary scopolamine concentrations using data collected from the IND clinical trial protocol with INSCOP. Twelve healthy human subjects were administered at three dose levels (0.1, 0.2 and 0.4 mg) of INSCOP. Serial blood, saliva and urine samples were collected between 5 min to 24 h after dosing and scopolamine concentrations were measured by using a validated LCMSMS assay. PK compartmental models, using actual dosing and sampling time, were established using Phoenix (version 1.2). Model selection was based on a likelihood ratio test on the difference of criteria (2LL (i.e. log-likelihood ratio test)) and comparison of the quality of fit plots. The results: Predictable correlations among scopolamine concentrations in compartments of plasma, saliva and urine were established, and for the first time the model satisfactorily predicted the population and individual PK of INSCOP in plasma, saliva and urine. The model can be utilized to predict the INSCOP plasma concentration by saliva and urine data, and it will be useful for monitoring the PK of scopolamine in space and other remote environments using noninvasive sampling of saliva and/or urine

    Functional correlates of optic flow motion processing in Parkinson’s disease

    Get PDF
    The visual input created by the relative motion between an individual and the environment, also called optic flow, influences the sense of self-motion, postural orientation, veering of gait, and visuospatial cognition. An optic flow network comprising visual motion areas V6, V3A, and MT+, as well as visuo-vestibular areas including posterior insula vestibular cortex (PIVC) and cingulate sulcus visual area (CSv), has been described as uniquely selective for parsing egomotion depth cues in humans. Individuals with Parkinson’s disease (PD) have known behavioral deficits in optic flow perception and visuospatial cognition compared to age- and education-matched control adults (MC). The present study used functional magnetic resonance imaging (fMRI) to investigate neural correlates related to impaired optic flow perception in PD. We conducted fMRI on 40 non-demented participants (23 PD and 17 MC) during passive viewing of simulated optic flow motion and random motion. We hypothesized that compared to the MC group, PD participants would show abnormal neural activity in regions comprising this optic flow network. MC participants showed robust activation across all regions in the optic flow network, consistent with studies in young adults, suggesting intact optic flow perception at the neural level in healthy aging. PD participants showed diminished activity compared to MC particularly within visual motion area MT+ and the visuo-vestibular region CSv. Further, activation in visuo-vestibular region CSv was associated with disease severity. These findings suggest that behavioral reports of impaired optic flow perception and visuospatial performance may be a result of impaired neural processing within visual motion and visuo-vestibular regions in PD.Published versio

    Effect of antiorthostatic BedRest (BR) on GastroIntestinal Motility (GIM) of normal subjects

    Get PDF
    The combined effects of postural changes, fluid shifts and diuresis associated with the absence of the gravity vector may decrease gastrointestinal motility (GIM) during space flight. GIM can be estimated from the mouth to cecum transit time (MCTT) of orally administered lactulose (LAC); this test is used to assess changes in GIM in normal subjects and in patients with GI pathology and related disease conditions. Since bedrest (BR) mimics some of the physiological changes that occur during space flight, the effect of ten days of BR on GIM was evaluated from the MCTT of LAC. Methods: Subjects were 12 nonsmoking males between the ages of 35 and 50. After an 8-10 hour fast, subjects ingested Cephulac (registered) (20 g solution) with a low-fiber breakfast on four different days (45, 30, 25, and 20) before BR and on three separate days (4, 7, and 10) during BR. Breath-H2 concentrations were measured before and at 10 minute intervals for 4 hours after breakfast using a Quintron breathalyzer and MCTT was determined from these data. Results: MCTT ranged between 10 and 122 minutes during ambulation and 80 to 120 minutes during BR with means of 79 minutes and 122 minutes respectively. Conclusion: Mean MCTT during BR was 54 percent longer than during ambulation, suggesting that absorption and availability of orally administered medications and nutrients may be delayed or impaired as a result of decreased GIM during bedrest

    Radiation Impact on Pharmaceutical Stability: Retrospective Data Review

    Get PDF
    Historical studies performed by the JSC Pharmacotherapeutics Discipline suggest that exposure to spaceflight conditions may compromise the safety and efficacy of some medications. Follow-on studies have revealed that affected medications demonstrate reductions in active pharmaceutical ingredient (API) concentrations and altered release characteristics. It was hypothesized that the changes in API potency and release were from the medication's exposure to the harsh environmental conditions of spaceflight. Subsequent review of the spaceflight environmental control records from the time of these studies indicated that temperature and humidity levels aboard all spacecraft remained within United States Pharmacopeia (USP) recommended ranges to maintain optimal pharmaceutical stability. Therefore, space radiation was presumed to be the source of observed drug degradation. The Pharmacotherapeutics Discipline conducted a ground analog radiation experiment in 2006 at the NASA Space Radiation Laboratory (NSRL) at Brookhaven to validate this theory and to characterize the effects of high-energy radioactive particles on pharmaceutical stability. These data were never published. Recently, the Exploration Medical Capability (ExMC) Element finalized a research plan (RP) aimed at providing a safe and effective medication formulary for exploration spaceflight. As ExMC begins to design new flight and ground analog radiation studies, further analysis of the 2006 NSRL study data is essential for the characterization of the impact of radiation on medication potency and efficacy in the exploration spaceflight environment

    Population Pharmacokinetics of Intranasal Scopolamine

    Get PDF
    Introduction: An intranasal gel dosage formulation of scopolamine (INSCOP) was developed for the treatment of Space Motion Sickness (SMS).The bioavailability and pharmacokinetics (PK) was evaluated using data collected in Phase II IND protocols. We reported earlier statistically significant gender differences in PK parameters of INSCOP at a dose level of 0.4 mg. To identify covariates that influence PK parameters of INSCOP, we examined population covariates of INSCOP PK model for 0.4 mg dose. Methods: Plasma scopolamine concentrations versus time data were collected from 20 normal healthy human subjects (11 male/9 female) after a 0.4 mg dose. Phoenix NLME was employed for PK analysis of these data using gender, body weight and age as covariates for model selection. Model selection was based on a likelihood ratio test on the difference of criteria (-2LL). Statistical significance for base model building and individual covariate analysis was set at P less than 0.05{delta(-2LL)=3.84}. Results: A one-compartment pharmacokinetic model with first-order elimination best described INSCOP concentration ]time profiles. Inclusion of gender, body weight and age as covariates individually significantly reduced -2LL by the cut-off value of 3.84(P less than 0.05) when tested against the base model. After the forward stepwise selection and backward elimination steps, gender was selected to add to the final model which had significant influence on absorption rate constant (ka) and the volume of distribution (V) of INSCOP. Conclusion: A population pharmacokinetic model for INSCOP has been identified and gender was a significant contributing covariate for the final model. The volume of distribution and Ka were significantly higher in males than in females which confirm gender-dependent pharmacokinetics of scopolamine after administration of a 0.4 mg dose

    Pharmacotherapeutics of Intranasal Scopolamine: FDA Regulations and Procedures for Clinical Applications

    Get PDF
    Space Motion Sickness (SMS) is commonly experienced by astronauts and often requires treatment with medications during the early flight days of a space mission. Bioavailability of oral (PO) SMS medications is often low and highly variable; additionally, physiological changes in a microgravity environment exacerbate variability and decrease bioavailability. These factors prompted NASA to develop an intranasal dosage form of scopolamine (INSCOP) suitable for the treatment of SMS. However, to assure safety and efficacy of treatment in space, NASA physicians prescribe commercially available pharmaceutical products only. Development of a pharmaceutical preparation for clinical use must follow distinct clinical phases of testing, phase I through IV to be exact, before it can be approved by the FDA for approval for clinical use. After a physician sponsored Investigative New Drug (IND) application was approved by the FDA, a phase I clinical trial of INSCOP formulation was completed in normal human subjects and results published. The current project includes three phase II clinical protocols for the assessment of pharmacokinetics and pharmacodynamics (PK/PD), efficacy, and safety of INSCOP. Three clinical protocols that were submitted to FDA to accomplish the project objectives: 1) 002-A, a FDA Phase II dose ranging study with four dose levels between 0.1 and 0.4 mg in 12 subjects to assess PK/PD, 2) 002-B, a phase II clinical efficacy study in eighteen healthy subjects to compare efficacy of 0.2 (low dose) and 0.4 mg (high dose) INSCOP for prophylactic treatment of motion-induces (off-axis vertical rotation) symptoms, and (3) 002-C, a phase II clinical study with twelve subjects to determine bioavailability and pharmacodynamics of two doses (0.2 and 0.4 mg) of INSCOP in simulated microgravity, antiorthostatic bedrest. All regulatory procedures were competed that include certification for Good laboratory Procedures by Theradex , clinical documentation, personnel training, selection of clinical research operations contractor, data capturing and management, and annual reporting of results to FDA were successfully completed. Protocol 002-A was completed and sample and data analysis is currently in progress. Protocol 002-B is currently in progress at Dartmouth Hitchcock Medical Center and Protocol 002-C has been submitted to the FDA and will be implemented at the same contractor site as 002-A. An annual report was filed as required by FDA on the results of Protocol 002-A. Once all the three Phase II protocols are completed, a New Drug Administration application will be filed with FDA for Phase III clinical assessment and approval for marketing of the formulation. A commercial vendor will be identified for this phase. This is critical for making this available for treatment of SMS in astronauts and military personnel on duty. Once approved by FDA, INSCOP can be also used by civilian population for motion sickness associated with recreational travel and other ailments that require treatment with anticholinergic drugs
    • …
    corecore