50 research outputs found

    Green Polymer Chemistry: Investigating the Mechanism of Radical Ring-Opening Redox Polymerization (R3P) of 3,6-Dioxa-1,8-octanedithiol (DODT)

    Get PDF
    The mechanism of the new Radical Ring-opening Redox Polymerization (R3P) of 3,6-dioxa-1,8-octanedithiol (DODT) by triethylamine (TEA) and dilute H2O2 was investigated. Scouting studies showed that the formation of high molecular weight polymers required a 1:2 molar ratio of DODT to TEA and of DODT to H2O2. Further investigation into the chemical composition of the organic and aqueous phases by 1H-NMR spectroscopy and mass spectrometry demonstrated that DODT is ionized by two TEA molecules (one for each thiol group) and thus transferred into the aqueous phase. The organic phase was found to have cyclic disulfide dimers, trimers and tetramers. Dissolving DODT and TEA in water before the addition of H2O2 yielded a polymer with Mn = 55,000 g/mol, in comparison with Mn = 92,000 g/mol when aqueous H2O2 was added to a DODT/TEA mixture. After polymer removal, MALDI-ToF MS analysis of the residual reaction mixtures showed only cyclic oligomers remaining. Below the LCST for TEA in water, 18.7 掳C, the system yielded a stable emulsion, and only cyclic oligomers were found. Below DODT/TEA and H2O2 1:2 molar ratio mostly linear oligomers were formed, with \u3c20% cyclic oligomers. The findings support the proposed mechanism of R3P. http://dx.doi.org/10.3390/molecules2004650

    Effect of Nanoscale Confinement on Glass Transition of Polystyrene Domains from Self-assembly of Block Copolymers

    Get PDF
    The understanding of size-dependent properties is key to the implementation of nanotechnology. One controversial and unresolved topic is the influence of characteristic size on the glass transition temperature (T(g)) for ultrathin films and other nanoscale geometries. We show that T(g) does depend on size for polystyrene spherical domains with diameters from 20 to 70 nm which are formed from phase separation of diblock copolymers containing a poly(styrene-co-butadiene) soft block and a polystyrene hard block. A comparison of our data with published results on other block copolymer systems indicates that the size dependence of T(g) is a consequence of diffuse interfaces and does not reflect an intrinsic size effect. This is supported by our measurements on 27 nm polystyrene domains in a styrene-isobutylene-styrene triblock copolymer which indicate only a small T(g) depression (3 K) compared to bulk behavior. We expect no effect of size on T(g) in the limit as the solubility parameters of the hard and soft blocks diverge from each other. This strongly segregated limiting behavior agrees with published data for dry and aqueous suspensions of small polystyrene spheres but is in sharp contrast to the strong influence of film thickness on T(g) noted in the literature for free standing ultrathin polystyrene films

    Liquid chromatography at critical conditions (LCCC): Capabilities and limitations for polymer analysis

    Get PDF
    This paper investigates liquid chromatography at critical condition (LCCC) for polymer analysis. Based on controversial claims on the separation of cyclic polymers from linear analogues in the literature, the efficiency of LCCC for separation and purity analysis is questioned. Polyisobutylene (PIB) and poly(3,6-dioxa-1,8-octanedithiols) (polyDODT) were used for the study. The structure of low molecular weight cyclic and linear polyDODT was demonstrated by MALDI-ToF. NMR did not show the presence of thiol end groups in higher molecular weight PIB-disulfide and polyDODT samples, so they were considered cyclic polymers. When a low molecular weight polyDODT oligomer with only traces of cycles, as demonstrated by MALDI-ToF, was mixed with an M_n = 27 K g/mol cyclic sample, LCCC did not detect the presence of linear oligomers at 6 wt%. Based on the data presented here, it can be concluded that the LCCC method is not capable of measuring <6 wt% linear contamination so earlier claims for cyclic polystyrene (PS) samples purified by LCCC having <3% linear contaminants are questioned

    Liquid chromatography at critical conditions (LCCC): Capabilities and limitations for polymer analysis

    Get PDF
    This paper investigates liquid chromatography at critical condition (LCCC) for polymer analysis. Based on controversial claims on the separation of cyclic polymers from linear analogues in the literature, the efficiency of LCCC for separation and purity analysis is questioned. Polyisobutylene (PIB) and poly(3,6-dioxa-1,8-octanedithiols) (polyDODT) were used for the study. The structure of low molecular weight cyclic and linear polyDODT was demonstrated by MALDI-ToF. NMR did not show the presence of thiol end groups in higher molecular weight PIB-disulfide and polyDODT samples, so they were considered cyclic polymers. When a low molecular weight polyDODT oligomer with only traces of cycles, as demonstrated by MALDI-ToF, was mixed with an M_n = 27 K g/mol cyclic sample, LCCC did not detect the presence of linear oligomers at 6 wt%. Based on the data presented here, it can be concluded that the LCCC method is not capable of measuring <6 wt% linear contamination so earlier claims for cyclic polystyrene (PS) samples purified by LCCC having <3% linear contaminants are questioned

    Polyisobutylene鈥擭ew Opportunities for Medical Applications

    Get PDF
    This paper presents the results of the first part of testing a novel electrospun fiber mat based on a unique macromolecule: polyisobutylene (PIB). A PIB-based compound containing zinc oxide (ZnO) was electrospun into self-supporting mats of 203.75 and 295.5 g/m2 that were investigated using a variety of techniques. The results show that the hydrophobic mats are not cytotoxic, resist fibroblast cell adhesion and biofilm formation and are comfortable and easy to breathe through for use as a mask. The mats show great promise for personal protective equipment and other applications

    Overview of Living Cationic Polymerization. Part 3: Living Cationic Polymerization of Isobutene and Styrenes

    No full text

    Green Polymer Chemistry: Enzyme Catalysis for Polymer Functionalization

    No full text
    Enzyme catalyzed reactions are green alternative approaches to functionalize polymers compared to conventional methods. This technique is especially advantageous due to the high selectivity, high efficiency, milder reaction conditions, and recyclability of enzymes. Selected reactions can be conducted under solventless conditions without the application of metal catalysts. Hence this process is becoming more recognized in the arena of biomedical applications, as the toxicity created by solvents and metal catalyst residues can be completely avoided. In this review we will discuss fundamental aspects of chemical reactions biocatalyzed by Candida antarctica lipase B, and their application to create new functionalized polymers, including the regio- and chemoselectivity of the reactions
    corecore