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Abstract 

This paper investigates liquid chromatography at critical condition (LCCC) for polymer analysis. 

Based on controversial claims on the separation of cyclic polymers from linear analogues in the 

literature, the efficiency of LCCC for separation and purity analysis is questioned.  

Polyisobutylene (PIB) and poly(3,6-dioxa-1,8-octanedithiols) (polyDODT) were used for the 

study. The structure of low molecular weight cyclic and linear polyDODT was demonstrated by 

MALDI-ToF.  NMR did not show the presence of thiol end groups in higher molecular weight 

PIB-disulfide and polyDODT samples, so they were considered cyclic polymers. When a low 

molecular weight polyDODT oligomer with only traces of cycles, as demonstrated by MALDI-

ToF, was mixed with an Mn = 27K g/mol cyclic sample, LCCC did not detect the presence of 

linear oligomers at 6 wt%. Based on the data presented here, it can be concluded that the LCCC 

method is not capable of measuring < 6 wt% linear contamination so earlier claims for cyclic 

polystyrene (PS)  samples purified by LCCC having < 3 % linear contaminants are questioned. 
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1 Introduction 

 

Despite progress in the synthesis of polymer macrocycles, which has created materials of great 

fundamental interest, limitations in sample size and/or purity remain obstacles to reconciling 

controversial results and leave the dynamics of cyclic polymers shrouded in uncertainty. Most 

rheological studies examine cyclic polymers made by linking the two ends of linear chains made 

by anionic living polymerization under very dilute conditions, inherently leaving linear chains in 

the final product (Figure 1).  

 
Figure 1 Synthesis of cycles by connecting the two ends of linear chains made by anionic 

polymerization. 

 

Several linking chemistries have been investigated [1–10], but in all cases a mixture of linear 

(single terminated, coupled double or higher condensation degrees) and cyclic polymers are 

obtained. It was also shown that the cyclic content decreases with increasing molecular weight 

[2], leading to difficulties in fractionating the final products to yield pure cyclic polymer. 

Contradictory observations regarding cycle dynamics are often attributed to linear contaminants, 
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fueling ongoing controversy [4,8,10–12]. Since the end-linking methods are not quantitative, the 

cycles must be separated from linear chains. Early efforts by fractionation by preparative Size 

Exclusion Chromatography (SEC) have been questioned [8]. The advent of Liquid 

Chromatography at the Critical Condition (LCCC) led to optimism that a better separation of 

linear chains from the cycles can be achieved, though the results have been less than fully 

satisfactory [8,12–16]. The critical condition is usually defined as the point at which the weak 

attractive enthalpic interaction effect is exactly compensated by the entropic exclusion effect for 

a polymer. In other words, LCCC operates at the transition of size exclusion and adsorption 

modes of liquid chromatography, so in principle polymers with various functional groups and 

architectures (e.g., cyclic and linear polymers) can be separated, regardless of size. However, the 

initial optimism may be misplaced. To our knowledge, all LCCC studies of cyclic systems have 

investigated the separation of cyclic polystyrene (PS)  from linear analogues in a mixture formed 

by the ring closure procedure (see Figure 1). Even for a fixed backbone structure, reproducibility 

across laboratories remains elusive. For example, drastically different rheological properties 

were reported for similar molecular weight cyclic PS , using similar LCCC procedures for 

purification [7,10]. Lee et al. demonstrated the extreme sensitivity of the critical condition to 

temperature, solvent composition and column pore size [6], but most publications do not specify 

the temperature used. Similarly extreme sensitivity is reported for a subtle change in backbone 

structure: deuteration of 120 kg/mol cyclic PS dramatically decreased the elution time from 6 

minutes to 3.7 minutes [7].
 
Most groups have reported the use of hydrophobized (C18) silica gel 

column (Hypersil or Eurogel) with 100 Å pore size, and solvent-non-solvent mixtures 

(CH2Cl2/CH3CN or THF/Hexane) [5,7].
 
Most work has reported that high molecular weight 

cyclic PS eluted after the linear counterparts. However, Lee et al. reported that when they used a 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 

Hypersil/100 Å and CH2Cl2/CH3CN 57v/43v solvent mixture, a small cyclic PS with Mw = 6,500 

g/mol eluted earlier than the linears [6]. Cho et al. showed that the elution time of cyclic samples 

increased with increasing molecular weight,  but the smallest cyclic PS with Mw = 5000 g/mol 

barely separated from its linear counterpart [7]. Pasch et al. found a similar problem for smaller 

cyclic PS: linear PS precursors and cycles of Mw = 3300 and 8600 g/mol both eluted at similar 

times in THF-hexane 34.6/65.4% mixture, limiting effective separation [5]. He showed that good 

separation could be obtained when he used a bare silica column. He also demonstrated the effect 

of end groups on linear chains and dangling groups on the cycles by comparing RI and UV 

traces. Thus the literature on LCCC to separate systems as close as linear and cyclic counterparts 

remains controversial, unlike in the case of block copolymers where LCCC has proven to be 

highly productive [17,18].
 

Based on the above examples, we second Lee’s suggestion [19] that the differences found by 

different groups may be related to the different coupling chemistries used for closure of the 

cycles. McKenna et al. compared cyclic PS prepared by two different linking chemistries [4]. In 

retrospect, the differences they found in rheological behavior could be attributed to the different 

chemistries leading to different levels of linear contamination. Doi’s rheological studies used yet 

another synthetic method [12,20], while Kapnistos used Roovers’ original samples, but now 

fractionated by LCCC [8]. Pasch used a different, multistep synthesis that resulted in cycles 

containing various side groups [5]. Pasquino mentions using anionic methods with LCCC 

purification with no further details [16]. Thus we contend that LCCC may not yield cyclic 

polymers with the purity claimed (<1-3 wt% linear contaminants). Therefore, we set out to 

investigate LCCC with a different polymer family that was shown to produce inherently very 

pure cycles under selected conditions without any linear contaminants. This new family is 
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disulfide polymers made by Redox Radical Recombination Polymerization (R3P) of dithiols. 

This “green” process, using recyclable triethylamine (TEA) aqueous hydrogen peroxide and air, 

was invented in the Puskas lab and used to polymerize poly(3,6-dioxa-1,8-octanedithiol) (see 

Scheme 1) containing only disulfide links, making the products fully biodegradable to monomer 

[21–24].  

 

 

Scheme 1 R3P producing polyDODT. 

 

Under strongly oxidizing conditions, cyclization is preferred, yielding high molecular weight 

cyclic polyDODT with no “foreign” groups. MALDI-ToF of the low molecular weight fractions 

of a poly(DODT) with Mn  = 164K g/mol showed pure cyclic polymer (Figure 2A and B). The 

structure of the polymers somewhat resembles poly(ethylene oxide), but it is an amorphous, non-

crystallizing, rubbery polymer at room temperature, with Tg around - 50 
o
C. Weaker oxidizing 

conditions may result in a mixture of cyclic and linear macrodithiols. In fact, so far, we have not 

been able to make pure linear polyDODT of high molecular weight. However, when less than 

two equivalents of 3wt% H2O2 was used, low molecular weight oligomers (Mn ~ 1000-2000 

g/mol) containing mostly linear chains with traces of cycles formed, as demonstrated by 
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MALDI-ToF (2C) [25]. The enlarged spectrum in 2D shows equal intensities with m/z = 

1105.247, 1285, 284 and 1465.318 for the sodiated hexa-, hepta- and octamer with thiol end 

groups. Very small signals can also be seen for cyclic structures at 2 m/z units lower, marked 

with an arrow in Figure 2D as ”cyclic” that could not be seen in the NMR. The other two smaller 

distributions were assigned to chains capped with one m/z = 1175.269) or two (m/z = 1245.495) 

SO3Na groups, possibly formed by oxidation [26]. 
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Figure 2. MALDI-TOF spectra of polyDODTs: (A) cyclic, full region and one step change 

enlarged, where the 180.028 m/z change represents one repeat unit (B); linear, full region (C) 

and one step change enlarged (D). 

 

We also made cyclic polyisobutylene (PIB)-disulfide using 30 wt% H2O2, for which 750 MHz 

1
H-

13
C correlation NMR did not reveal any thiol end groups [27]. Together with the additional 

evidence (Raman spectroscopy, SEC conformation analysis and higher Tg than the linear 

counterpart), they can be considered cyclic polymers. However, in this case the repeat units are 

macromonomers containing “foreign” ester groups as shown in Scheme 2: 
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Scheme 2 Synthesis of cyclic PIB-disulfide by R3P. 

 

In this paper we discuss LCCC of PIBs and polyDODTs, and the results will highlight the 

limitations of this method as well as setting upper bounds on the detection limit of linear content 

of these materials.  

 

2 Materials and methods 

 

 Materials 2.1

3,6-dioxa-1,8-octanedithiol (DODT) 95% (Aldrich), Triethylamine (TEA) (TCI), H2O2 30 wt% 

(Sigma-Aldrich), Acetone technical grade (Sigma), tetrahydrofuran (THF) HPLC grade non-

stabilized (Fischer Scientific), methanol HPLC grade (Fischer Scientific). For mass spectrometry 

THF (anhydrous, 99.9%, Aldrich), 1,8,9-anthracenetriol (dithranol, >97%; Alfa Aesar), sodium 

trifluoroacetate (>98%; Aldrich) or silver trifluoroacetate (98%, Aldrich). Polyisobutylene 

standards Mn = 2200, 30,700 and 118,200 g/mol (Đ = 1.30 1.26, 1.50) (Polymer Standards Co.).  

Functionalized PIBs were synthesized as reported earlier and are summarized in Table 1 [27,28]. 

The cyclic PIB disulfide (PIB-SS) was synthesized as reported earlier (Mn = 38,000 g/mol, Đ = 

1.60) [27].  
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Table 1 Functionalized PIBs  

Structure and Mn 

(g/mol) 
Ɖ 

OH-PIB-OH 1200 1.30 

OH-PIB-OH 1800 1.30 

OH-PIB-Allyl 1450 1.36 

HS-PIB-SH 1200 1.30 

 

 Synthesis of polyDODT 2.2

DODT monomer and TEA were mixed first for 20 minutes in an open 3 neck round bottom 

flask. In the case of experiments 1 and 3 (Table 2) 30 wt% aqueous H2O2 was added to the 

DODT-TEA mixture in 10−15 aliquots of equal volume during a time period of 60 and 90 

minutes to keep the reaction temperature relatively constant. Air was bubbled into the reaction 

flask for 5 minutes, followed by stirring using a magnetic stir bar in an open environment for 2 

hours. The precipitated polymer was removed from the reaction flask. In the case of experiments 

2 and 4 (Table 2), the mixture was added at once to 3 wt% aqueous hydrogen peroxide (H2O2), 

allowed to react for 1 more minute and poured into excess methanol to precipitate the polymer. 

The polymers were washed first with water then with acetone for 4 x 30 minutes to remove 

residual TEA and monomer. The excess acetone was decanted, and the polymers were dried in a 

vacuum oven until a constant weight was achieved.  

Table 2. Synthesis of polyDODTs. 

Sample ID 
DODT (mmol) DODT:TEA: H2O2 molar 

equivalency 

1 110.58* 1 : 3 : 2 

2 3.21** 1 : 2.3 : 2 

3 27.10* 1 : 3 : 2 

4 3.22** 1 : 2.3 : 2 

*30 and **3 wt% aqueous solution of H2O2.  
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 Size Exclusion Chromatography (SEC)  2.3

The SEC instrument consisted of an Agilent 1260 infinity isocratic pump, a Wyatt Eclipse 

DUALTEC separation system, an Agilent 1260 infinity variable wavelength detector (UV set at 

254 nm), a Wyatt OPTILAB T-rEX interferometric refractometer, a Wyatt DAWN HELOS-II 

18-angle static light scattering detector (MALS) with a built-in dynamic light scattering (DLS) 

module, an Agilent 1260 infinity standard autosampler. 6 StyragelVR columns (HR6, HR5, 

HR4, HR3, HR1, and H0.5) were thermostated at 35°C. THF was the mobile phase at a flow rate 

of 1 mL/min continuously distilled from CaH2. In each case 100 µL, 2 mg/mL polymer solution 

was injected. The results were analyzed using the ASTRA 6 software (Wyatt Technology), using 

dn/dc = 0.108 and 0.132 for PIB [29] and polyDODT [24]
 
, respectively. UV absorption 

coefficients were obtained assuming 100% mass recovery. 

 

 Proton Nuclear Magnetic Resonance spectroscopy (
1
H-NMR) 2.4

NMR spectra were recorded on Varian NMR 500 and 750 MHz instruments using deuterated 

chloroform (Chemical Isotope Laboratories, 99.8% CDCl3). The resonance of non-deuterated 

chloroform at δ=7.27 ppm for 
1
H and δ=77.23 for 

13
C ppm was used as internal reference.  

 

 Matrix-Assisted Laser Desorption Ionization Time of Flight Mass Spectrometry (MALDI-2.5

ToF) 

MALDI-ToF mass spectra were acquired with a Bruker UltraFlex-III time-of-flight (ToF) mass 

spectrometer (Bruker Daltonics, Billerica, MA) equipped with a Nd:YAG laser (355 nm), a two-

stage gridless reflector, and a single stage pulsed ion extraction source. Separate THF 

(anhydrous, 99.9%, Aldrich) solutions of polymer (10 mg/mL), 1,8,9-anthracenetriol (dithranol, 
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20 mg/mL, >97%; Alfa Aesar), sodium trifluoroacetate (10 mg/mL, >98%; Aldrich) or silver 

trifluoroacetate (10 mg/mL, 98%, Aldrich) were mixed in a ratio of 10:1:2 or 14:1:4 

(matrix:cationizing salt:polymer), and 0.5 μL of the resulting mixture was introduced on to the 

MALDI target plate and allowed to dry. The spectra were obtained in the reflectron mode. The 

attenuation of the nitrogen laser was adjusted to minimize unwanted polymer fragmentation and 

to maximize the sensitivity. The calibration of mass scale was carried out externally using 

poly(methyl methacrylate) or polystyrene standards having similar molecular weight as the 

sample. 

 

 Liquid Chromatography at Critical Conditions (LCCC) 2.6

The set-up consisted of a Macherey-Nagel Nucleosil® C18 column (100 Å pore size, 5 µm 

particle size, length 250 mm, inner diameter 4.6 mm) operated at 35°C and a flow rate of 0.5 

mL/min in every case. Eluents were mixed from HPLC grade methanol and THF. Polymer 

solutions were prepared using the eluent mixtures with 0.05 wt% polymer concentration. The 

results were analyzed using the ASTRA 7 software (Wyatt Technology). 

 

3 Results and Discussion 

 

 PIBs 3.1

Banerjee et al. established LCCC condition for PIBs with Mn < 3000 g/mol with 19.5 wt% 

MeOH in THF solvent mixture at 35°C column temperature [30]. The same conditions were used 

in this study. Figure 3 shows the differential Refractive Index (dRI) LCCC traces of HO-PIB-

OH, HO-PIB-Allyl, HS-PIB-SH synthesized by our group [28,31] and a PIB standard (2.2K 

g/mol from Polymer Standards). For this latter, the end groups are not specified, but likely are a 

CH3 - at one end and a double bond at the other. It is clear that the linear PIB oligomers separate 

based on their end groups (although the retention time of HS-PIB-SH is very close to those of the 

diols) rather than eluting together based on their linear topology; when end groups are identical, 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 

linear chains of different length do elute together: two HO-PIB-OH samples of different Mn had 

the same retention time at 6.26 minutes in 19.5 wt% MeOH in THF, close to that reported for a 

linear HO-PIB-OH with a different structure by Banerjee et al (see Tables   
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Table 3 andTable 4) [30].  

 
Figure 3 LCCC chromatograms of PIBs with different end-groups: (A) dRI traces, (B) UV 

traces. Vertical line: 6.26 minutes.  

 

  

A B 
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Table 3 Retention times (in minutes) of PIBs in 19.5 wt% and 10wt% MeOH/THF  

Structure and Mn 

(g/mol) 

dRI (min) 

 wt% MeOH 

19.5                 10.0 

PIB Standard L-2.2K 6.74 6.17 

OH-PIB-OH 1200 6.26 5.89 

OH-PIB-OH 1800 6.27 5.96 

OH-PIB-Allyl 1450 6.58 6.19 

HS-PIB-SH 1200 6.27 5.85 

PIB Standard L-31K - 4.38 

PIB Standard L-118K - 4.06 

PIB-SS (cyclic, C-38K) - 4.20 

Table 4 Retention times from the work of Banerjee et al. of PIBs with different end groups and 

Mn ~ 2000 g/mol in 19.5 wt% MeOH/THF[30] 

Structure  

(g/mol) 
dRI (min) 

PIB-diol 
5.8 

PIB-monool 
5.9 

PIB-diCl 
6.4 

PIB-diallyl 
6.5 

PIB-diolefin 
6.5 

 

While PIB is transparent in UV, the purchased PIB2.2K standard displayed a very strong UV 

trace (Figure 3B). This must be due to a UV-active functional groups – likely a double bond. For 

comparison, Figure 3B also displays UV traces for OH-PIB-Allyl and HO-PIB-OH..  
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Table 3 also lists retention times in 10% MeOH in THF, because higher molecular weight PIBs 

did not dissolve in the 19.5 wt% MeOH/THF mixture. The retention times of the low molecular 

weight PIBs were shorter in 10 wt% MeOH/THF but not much. The reason for the very small 

difference in retention times between 19.5 and 10% MeOH is not clear. However, the higher 

molecular weight PIB standards (L-31K and L-118K) eluted very close to each other (despite 

having very different molecular weights) as expected for the critical condition. Figure 4 presents 

the LCCC traces. Figure 4A also shows the UV signal of the samples. Since PIB is transparent in 

UV, any signal represents the presence of a UV-active residue in the chain.  

 
Figure 4. LCCC chromatograms of PIB standards, a cyclic poly(PIB-disulfide) and its HS-PIB-

SH precursor: (A) dRI (solid line) and UV (dash-dot line) traces and (B) LS traces. L stands for 

linear and C stands for cyclic polymers, and the numbers represent Mn values. Vertical line: 4.20 

minutes. 
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The UV signal of the 38k cyclic poly(PIB-SS)  is shifted toward the higher molecular weight L-

31K and L-118K standards, relative to the HS-PIB-SH macromonomer. The L-31K and L-118K 

PIB standards do not show any UV signals (dash-dot in Figure 4A) because either they do not 

have UV-active end groups or, if they have an olefin end group the sensitivity of the detector is 

not enough to show a signal. Figure 4 also shows that the L-118K standard elutes first, while the 

cyclic poly(PIB-SS) (C-38K) elutes a bit faster than the L-31K PIB standard. We postulate that 

the cyclic poly(PIB-SS)  containing polar ester groups interacts with the non-polar column  less 

than the purchased linear standards whose end groups are unknown. Due to their high molecular 

weight the end groups are expected to have little influence on the UV absorption – accordingly, 

the two linear PIB standards show no UV absorption. The cyclic poly(PIB-SS) , on the other 

hand, shows a distinct UV trace. The area under the UV trace relative to the dRI trace is 34.5% 

for the cyclic poly(PIB-SS) (C-38K), very close to 39.8% calculated for the HS-PIB-SH 1200 

(L-1.2K). This is indirect evidence for the structure of the repeat units in the C-38K. 

In summary, under the conditions investigated the cyclic poly(PIB-SS)  (C-38K) eluted before 

the PIB L-31K linear standard, possibly due to less interaction of the cycle with the column. 

However, the small difference in the retention times would make separation of cyclic poly(PIB-

SS) from linear PIB impossible. We plan to use a bare silica column to get better separation, 

similarly to Pasch’s approach. 

 

  PolyDODT 3.2

Five polyDODT samples were investigated and the SEC data are summarized in Table 5, 

together with the experiment numbers in Table 2. 
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Table 5. Molecular weight data of polyDODT samples. 

Sample ID Yield (%) Mn (g/mol) Mw (g/mol) Ɖ 

1: C-370K 90 366,700 556,000 1.5 

2: C-78K 89 77,800 140,000 1.8 

3: C-75K 92 75,300 103,000 1.4 

4: C-27K 91 27,400 52,000 1.9 

5 L-1.3K 85 1,300 2,100 1.4 

 

The fifth sample in Table 5 is the linear oligomer whose MALDI-ToF is shown in Figure 2C and 

D. Figure 5A shows the UV SEC traces. The oligomer peaks up to tetramers, assigned based on 

the retention time-peak molecular weight constructed for polyDODT, are well resolved. SEC 

gave the number average molecular weight of Mn = 1300 g/mol with Ɖ= 1.4. Figure 5B also 

shows the 
1
H NMR spectrum with peak assignments, in comparison with the monomer. The 

assignments correspond to a linear oligomer with thiol end groups. 

 
Figure 5 (A) SEC UV trace and (B) 

1
H-NMR spectrum of 1.3K linear polyDODT sample. 

Monomer

Dimer

Trimer

Tetramer

?

A B 
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The signal of the thiol proton from the monomer (a) practically did not change (1.58 vs 1.60 

ppm). The signals b and c ( 2.68 and 3.61 ppm) shifted from their position from the monomer to 

b’ and c’ ( 2.98 and 3.75 ppm) in the polymer on account of the disulfide bond formation. The 

position of the internal proton signals in the monomer (d 3.62 ppm) and the polymer (d’ 3.65 

ppm) are very close and overlap with the polymer end group protons (c). The signal at 2.68 ppm 

is assigned to protons (b) in the polymer end groups. In cyclic polymers only b’, c’ and d can be 

seen (not shown).  

LCCC involves the use of solvent mixtures of at least two components, with a “good” and a 

“bad” solvent of the polymer. Very little data are available for polyDODT so the  solubility 

parameter was calculated [32]. =11.0 cal
1/2 

cm
-3/2

 was obtained for polyDODT, close to PS at 

10.6 cal
1/2 

cm
-3/2 

and farther from PEO and PIB at 9.4 and 7.7 cal
1/2 

cm
-3/2

. In light of this and that 

polyDODT dissolves easily in THF, for the LCCC experiments an THF/MeOH solution was 

chosen, similarly to what we used for the PIB. Table 6 shows LCCC retention times based on 

UV traces for 3 different solvent mixture compositions. There was only a small shift in retention 

times from 10 wt% to 25 wt% MeOH, but the sample with the highest Mn dissolved only in the 

mixture with 10 wt% MeOH at a reduced concentration of 0.16 wt%.  

Table 6. Retention times of polyDODTs in different MeOH/THF compositions.  

MeOH content 10 wt% 19.5 wt% 25 wt% 

Sample and Mn (g/mol) Retention time according to UV peak (min) 

R-370K 4.01 NA NA 

C-78K 3.84 3.93 4.01 

C-75K 3.83 3.88 3.93 

C-27K 4.04 4.10 4.12 

L-1.3K 5.74 - - 

DODT monomer L-0.18K 6.46 6.55 6.56 
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Figure 6 compares the UV LCCC traces of the polymers and the DODT monomer at 10 wt% 

MeOH content. The L-1.3K sample shows a single peak at 5.75 minutes. The traces of the first 

four polymers are also monomodal at around 4 minutes, and are close to each other, regardless of 

the large difference in Mn values. The short elution times are also similar to the high molecular 

weight PIB samples, indicating less interaction with the columns compared to the low molecular 

weight standards and the monomer (which elutes last at 6.46 minutes) and for which the end 

groups have a significant influence on the elution times. The 27, 75 and 78K polyDODT samples 

are cyclic as they did not have thiol end group signals by NMR. The 370K polymer also did not 

have thiol end group signals but in this case NMR may not be sensitive enough to show end 

group signals.  

 

 

L-1.3K

C-27K

L-monomer

C-75K

C-78K

C-370K
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Figure 6. UV LCCC traces of polyDODTs in 10 wt% MeOH/90 wt% THF. L stands for linear 

and C stands for cyclic polymers, and the numbers represent Mn values. Vertical line: 4.04 

minutes. 

The short retention times of the cyclic samples could be related to the fact that there is likely less 

interaction with the silica column than in the case of the linear polymer and the monomer having 

thiol end groups. The polyDODT cycles have no other chemical groups other than the repeat 

units, shown in Scheme 1. Unfortunately, we could not make linear polyDODTs of high 

molecular weight, so we can only show that the L-1.3K eluted much later than the cyclic 

polymers, likely due to more interaction with the column. It is likely that we will find better 

separation using a bare silica column in the future. 

 Sensitivity Analysis 3.3

The UV molar extinction coefficient calculated from the UV signal of polyDODT (ε264 = 2.00 

mL/mgcm) was found to be ~30% larger than that of PS (ε264 = 1.52 mL/mgcm) thus promising 

higher sensitivity for the measurement than would be obtained from PS. We calculated the 

sensitivity of our RI and UV detectors as the 3xnoise (N, baseline fluctuation) to signal (S, peak 

height) ratio. 200 μg of a PS standard (Mn = 29,300 g/mol and Ɖ= 1.002, 100 μL with 2 mg/mL 

concentration) was used, typical for SEC analysis. The RI detector had a 3xN/S ratio of 0.003 

and the UV detector had a 3xN/S ratio  of 0.0003Thus the detection limit would be 6 μg in the 

200 μg injected sample, translating to 3 wt% Thus, the UV detector’s detection limit was 

estimated to be 3wt% linear contamination at best for samples with narrow dispersity. A series of 

concentrations were made with the linear oligomer of polyDODT (L-1.3K, Figure 2C and D). 

Based on the UV detector signal, the sample concentration was linearly proportional to both the 

UV peak heights and UV peak area as demonstrated in Figure 7. At the lowest concentration, the 
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UV signal was quite weak, which provides an indication of the limit of sensitivity of the setup 

used in our experiments.  

 
Figure 7. UV -concentration plot of L-1.3K. X – peak area (R

2
 = 0.9898); o – peak height (R

2
 = 

0.9919).  

 

Next, 6 wt% of the linear polyDODT sample (L-1.3K) was mixed with the cyclic polyDODT 

sample with Mn = 27,400 g/mol (C-27K). The total polymer concentration was 0.5 wt%, so the 

concentration of L-1.3K was 0.03 wt%. The traces are displayed in Figure 8. No signal appears 

at 5.75 minutes in the mixture. Figure 8 shows the traces of the series with progressively 

increasing L-1.3K content. The first small signal that can be detected at the position of the 

mostly linear chain appears when 27 wt% of L-1.3K was mixed with the cyclic sample (0.135 

wt% L-1.3K). Integration of the area under the peak assigned to the linear oligomer relative to 

the 27K cyclic sample gave 28.7% which is in very good agreement with the nominal 27%. The 

same method yielded 50.3 and 89.1% for the nominal 50 and 93% mixtures.  
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Figure 8. UV traces of L-1.3K – C-27K mixtures with % L-1.3K content in a total of 0.5 wt% 

mixture, marked on the graphs. 0, 6, 27, 50 and 93%  represent 0, 0.03, 0.14, 0.25 and 0.47 wt% 

absolute L-1.3K concentrations (see also Figure 7.) 

Based on the data presented here, it can be concluded that the LCCC method discussed in this 

work was not capable of measuring < 6 wt% linear contamination. 

 

4 Summary 

 

In conclusion, we found that while LCCC is a nice method to separate polymer samples based on 

their chemical structure as opposed to their size, but that the molecular weight range might be 

limited due to solubility differences. Based on our data LCCC under the conditions investigated 

is not sensitive enough to detect small amounts of linear contaminants in cyclic samples, even in 

a polymer with higher UV sensitivity (absorption coefficient) than PS. We have provided 
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evidence that there are caveats that our community must consistently acknowledge when using 

LCCC to detect or quantify the amount of linear contaminants in a putative cyclic sample. We 

plan to use a bare silica column for separation in the future, based on Pasch’s suggestion [5]. 
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Graphical abstract: 

 

HIGHLIGHTS: 

 Liquid chromatography at critical condition (LCCC) – capabilities and limitations 

 Investigation of poly(3,6-dioxa-1,8-octanedithiol) (polyDODT) and polyisobutylene-

disulfide (PIB-SS)  

 Demonstration of linear and cyclic polyDODT structure by NMR and MALDI-ToF 

 Demonstration of cyclic PIB-SS by NMR 
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 Limitations: solubility of low and high molecular weight samples; detection limit of <6 

wt% 
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