818 research outputs found

    X ray sensitive area detection device

    Get PDF
    A radiation sensitive area detection device is disclosed which comprises a phosphor-containing film capable of receiving and storing an image formed by a pattern of incoming x rays, UV, or other radiation falling on the film. The device is capable of fluorescing in response to stimulation by a light source in a manner directly proportional to the stored radiation pattern. The device includes: (1) a light source capable of projecting light or other appropriate electromagnetic wave on the film so as to cause it to fluoresce; (2) a means to focus the fluoresced light coming from the phosphor-containing film after light stimulation; and (3) at least one charged coupled detector or other detecting element capable of receiving and digitizing the pattern of fluoresced light coming from the phosphor-containing film. The device will be able to generate superior x ray images of high resolution from a crystal or other sample and will be particularly advantageous in that instantaneous near-real-time images of rapidly deteriorating samples can be obtained. Furthermore, the device can be made compact and sturdy, thus capable of carrying out x ray or other radiation imaging under a variety of conditions, including those experienced in space

    Depletion forces in non-equilibrium

    Full text link
    The concept of effective depletion forces between two fixed big colloidal particles in a bath of small particles is generalized to a non-equilibrium situation where the bath of small Brownian particles is flowing around the big particles with a prescribed velocity. In striking contrast to the equilibrium case, the non-equilibrium forces violate Newton's third law, are non-conservative and strongly anisotropic, featuring both strong attractive and repulsive domains.Comment: 4 pages, 3 figure

    Reentrance effect in the lane formation of driven colloids

    Full text link
    Recently it has been shown that a strongly interacting colloidal mixture consisting of oppositely driven particles, undergoes a nonequilibrium transition towards lane formation provided the driving strength exceeds a threshold value. We predict here a reentrance effect in lane formation: for fixed high driving force and increasing particle densities, there is first a transition towards lane formation which is followed by another transition back to a state with no lanes. Our result is obtained both by Brownian dynamics computer simulations and by a phenomenological dynamical density functional theory.Comment: 4 pages, 2 figure

    Differential Dynamic Microscopy of Bacterial Motility

    Get PDF
    We demonstrate 'differential dynamic microscopy' (DDM) for the fast, high throughput characterization of the dynamics of active particles. Specifically, we characterize the swimming speed distribution and the fraction of motile cells in suspensions of Escherichia coli bacteria. By averaging over ~10^4 cells, our results are highly accurate compared to conventional tracking. The diffusivity of non-motile cells is enhanced by an amount proportional to the concentration of motile cells.Comment: 4 pages, 4 figures. In this updated version we have added simulations to support our interpretation, and changed the model for the swimming speed probability distribution from log-normal to a Schulz distribution. Neither modification significantly changes our conclusion

    Integration through transients for Brownian particles under steady shear

    Full text link
    Starting from the microscopic Smoluchowski equation for interacting Brownian particles under stationary shearing, exact expressions for shear-dependent steady-state averages, correlation and structure functions, and susceptibilities are obtained, which take the form of generalized Green-Kubo relations. They require integration of transient dynamics. Equations of motion with memory effects for transient density fluctuation functions are derived from the same microscopic starting point. We argue that the derived formal expressions provide useful starting points for approximations in order to describe the stationary non-equilibrium state of steadily sheared dense colloidal dispersions.Comment: 17 pages, Submitted to J. Phys.: Condens. Matter; revised version with minor correction

    Phase Transitions of Hard Disks in External Periodic Potentials: A Monte Carlo Study

    Full text link
    The nature of freezing and melting transitions for a system of hard disks in a spatially periodic external potential is studied using extensive Monte Carlo simulations. Detailed finite size scaling analysis of various thermodynamic quantities like the order parameter, its cumulants etc. are used to map the phase diagram of the system for various values of the density and the amplitude of the external potential. We find clear indication of a re-entrant liquid phase over a significant region of the parameter space. Our simulations therefore show that the system of hard disks behaves in a fashion similar to charge stabilized colloids which are known to undergo an initial freezing, followed by a re-melting transition as the amplitude of the imposed, modulating field produced by crossed laser beams is steadily increased. Detailed analysis of our data shows several features consistent with a recent dislocation unbinding theory of laser induced melting.Comment: 36 pages, 16 figure

    Square root singularity in the viscosity of neutral colloidal suspensions at large frequencies

    Full text link
    The asymptotic frequency ω\omega, dependence of the dynamic viscosity of neutral hard sphere colloidal suspensions is shown to be of the form η0A(ϕ)(ωτP)−1/2\eta_0 A(\phi) (\omega \tau_P)^{-1/2}, where A(ϕ)A(\phi) has been determined as a function of the volume fraction ϕ\phi, for all concentrations in the fluid range, η0\eta_0 is the solvent viscosity and τP\tau_P the P\'{e}clet time. For a soft potential it is shown that, to leading order steepness, the asymptotic behavior is the same as that for the hard sphere potential and a condition for the cross-over behavior to 1/ωτP1/\omega \tau_P is given. Our result for the hard sphere potential generalizes a result of Cichocki and Felderhof obtained at low concentrations and agrees well with the experiments of van der Werff et al, if the usual Stokes-Einstein diffusion coefficient D0D_0 in the Smoluchowski operator is consistently replaced by the short-time self diffusion coefficient Ds(ϕ)D_s(\phi) for non-dilute colloidal suspensions.Comment: 18 pages LaTeX, 1 postscript figur

    Diffusive Evolution of Stable and Metastable Phases II: Theory of Non-Equilibrium Behaviour in Colloid-Polymer Mixtures

    Full text link
    By analytically solving some simple models of phase-ordering kinetics, we suggest a mechanism for the onset of non-equilibrium behaviour in colloid-polymer mixtures. These mixtures can function as models of atomic systems; their physics therefore impinges on many areas of thermodynamics and phase-ordering. An exact solution is found for the motion of a single, planar interface separating a growing phase of uniform high density from a supersaturated low density phase, whose diffusive depletion drives the interfacial motion. In addition, an approximate solution is found for the one-dimensional evolution of two interfaces, separated by a slab of a metastable phase at intermediate density. The theory predicts a critical supersaturation of the low-density phase, above which the two interfaces become unbound and the metastable phase grows ad infinitum. The growth of the stable phase is suppressed in this regime.Comment: 27 pages, Latex, eps

    Dispersity-Driven Melting Transition in Two Dimensional Solids

    Full text link
    We perform extensive simulations of 10410^4 Lennard-Jones particles to study the effect of particle size dispersity on the thermodynamic stability of two-dimensional solids. We find a novel phase diagram in the dispersity-density parameter space. We observe that for large values of the density there is a threshold value of the size dispersity above which the solid melts to a liquid along a line of first order phase transitions. For smaller values of density, our results are consistent with the presence of an intermediate hexatic phase. Further, these findings support the possibility of a multicritical point in the dispersity-density parameter space.Comment: In revtex format, 4 pages, 6 postscript figures. Submitted to PR

    Evidence for Unusual Dynamical Arrest Scenario in Short Ranged Colloidal Systems

    Full text link
    Extensive molecular dynamics simulation studies of particles interacting via a short ranged attractive square-well (SW) potential are reported. The calculated loci of constant diffusion coefficient DD in the temperature-packing fraction plane show a re-entrant behavior, i.e. an increase of diffusivity on cooling, confirming an important part of the high volume-fraction dynamical-arrest scenario earlier predicted by theory for particles with short ranged potentials. The more efficient localization mechanism induced by the short range bonding provides, on average, additional free volume as compared to the hard-sphere case and results in faster dynamics.Comment: 4 pages, 3 figure
    • …
    corecore