43 research outputs found

    Multimode Analysis of Nanoscale Biomolecular Interactions

    Get PDF
    Biomolecular interactions, including protein-protein, protein-DNA, and protein-ligand interactions, are of special importance in all biological systems. These interactions may occer during the loading of biomolecules to interfaces, the translocation of biomolecules through transmembrane protein pores, and the movement of biomolecules in a crowded intracellular environment. The molecular interaction of a protein with its binding partners is crucial in fundamental biological processes such as electron transfer, intracellular signal transmission and regulation, neuroprotective mechanisms, and regulation of DNA topology. In this dissertation, a customized surface plasmon resonance (SPR) has been optimized and new theoretical and label free experimental methods with related analytical calculations have been developed for the analysis of biomolecular interactions. Human neuroglobin (hNgb) and cytochrome c from equine heart (Cyt c) proteins have been used to optimize the customized SPR instrument. The obtained Kd value (~13 µM), from SPR results, for Cyt c-hNgb molecular interactions is in general agreement with a previously published result. The SPR results also confirmed no significant impact of the internal disulfide bridge between Cys 46 and Cys 55 on hNgb binding to Cyt c. Using SPR, E. coli topoisomerase I enzyme turnover during plasmid DNA relaxation was found to be enhanced in the presence of Mg2+. In addition, a new theoretical approach of analyzing biphasic SPR data has been introduced based on analytical solutions of the biphasic rate equations. In order to develop a new label free method to quantitatively study protein-protein interactions, quartz nanopipettes were chemically modified. The derived Kd (~20 µM) value for the Cyt c-hNgb complex formations matched very well with SPR measurements (Kd ~16 µM). The finite element numerical simulation results were similar to the nanopipette experimental results. These results demonstrate that nanopipettes can potentially be used as a new class of a label-free analytical method to quantitatively characterize protein-protein interactions in attoliter sensing volumes, based on a charge sensing mechanism. Moreover, the molecule-based selective nature of hydrophobic and nanometer sized carbon nanotube (CNT) pores was observed. This result might be helpful to understand the selective nature of cellular transport through transmembrane protein pores

    Investigating direct interaction between Escherichia coli topoisomerase I and RecA

    Get PDF
    Protein–protein interactions are of special importance in cellular processes, including replication, transcription, recombination, and repair. Escherichia coli topoisomerase I (EcTOP1) is primarily involved in the relaxation of negative DNA supercoiling. E. coli RecA, the key protein for homologous recombination and SOS DNA-damage response, has been shown to stimulate the relaxation activity of EcTOP1. The evidence for their direct protein–protein interaction has not been previously established. We report here the direct physical interaction between E. coli RecA and topoisomerase I. We demonstrated the RecA-topoisomerase I interaction via pull-down assays, and surface plasmon resonance measurements. Molecular docking supports the observation that the interaction involves the topoisomerase I N-terminal domains that form the active site. Our results from pull-down assays showed that ATP, although not required, enhances the RecA-EcTOP1 interaction. We propose that E. coli RecA physically interacts with topoisomerase I to modulate the chromosomal DNA supercoiling

    Structural insights into the repair mechanism of AGT for methyl-induced DNA damage

    Get PDF
    Methylation induced DNA base-pairing damage is one of the major causes of cancer. O6-alkylguanine-DNA alkyltransferase (AGT) is considered a demethylation agent of the methylated DNA. Structural investigations with thermodynamic properties of the AGT-DNA complex are still lacking. In this report, we modeled two catalytic states of AGT-DNA interactions and an AGT-DNA covalent complex and explored structural features using molecular dynamics (MD) simulations. We utilized the umbrella sampling method to investigate the changes in the free energy of the interactions in two different AGT-DNA catalytic states, one with methylated GUA in DNA and the other with methylated CYS145 in AGT. These non-covalent complexes represent the pre- A nd post-repair complexes. Therefore, our study encompasses the process of recognition, complex formation, and separation of the AGT and the damaged (methylated) DNA base. We believe that the use of parameters for the amino acid and nucleotide modifications and for the protein-DNA covalent bond will allow investigations of the DNA repair mechanism as well as the exploration of cancer therapeutics targeting the AGT-DNA complexes at various functional states as well as explorations via stabilization of the complex

    Covalent Complex of DNA and Bacterial Topoisomerase: Implications in Antibacterial Drug Development

    Get PDF
    A topoisomerase-DNA transient covalent complex can be a druggable target for novel topoisomerase poison inhibitors that represent a new class of antibacterial or anticancer drugs. Herein, we have investigated molecular features of the functionally important Escherichia coli topoisomerase I (EctopoI)-DNA covalent complex (EctopoIcc) for molecular simulations, which is very useful in the development of new antibacterial drugs. To demonstrate the usefulness of our approach, we used a model small molecule (SM), NSC76027, obtained from virtual screening. We examined the direct binding of NSC76027 to EctopoI as well as inhibition of EctopoI relaxation activity of this SM via experimental techniques. We then performed molecular dynamics (MD) simulations to investigate the dynamics and stability of EctopoIcc and EctopoI-NSC76027-DNA ternary complex. Our simulation results show that NSC76027 forms a stable ternary complex with EctopoIcc. EctopoI investigated here also serves as a model system for investigating a complex of topoisomerase and DNA in which DNA is covalently attached to the protein

    SPRD: a surface plasmon resonance database of common factors for better experimental planning

    Get PDF
    Background: Surface plasmon resonance is a label-free biophysical technique that is widely used in investigating biomolecular interactions, including protein-protein, protein-DNA, and protein-small molecule binding. Surface plasmon resonance is a very powerful tool in different stages of small molecule drug development and antibody characterization. Both academic institutions and pharmaceutical industry extensively utilize this method for screening and validation studies involving direct molecular interactions. In most applications of the surface plasmon resonance technology, one of the studied molecules is immobilized on a microchip, while the second molecule is delivered through a microfluidic system over the immobilized molecules. Changes in total mass on the chip surface is recorded in real time as an indicator of the molecular interactions. Main body: Quality and accuracy of the surface plasmon resonance data depend on experimental variables, including buffer composition, type of sensor chip, coupling chemistry of molecules on the sensor surface, and surface regeneration conditions. These technical details are generally included in materials and methods sections of published manuscripts and are not easily accessible using the common internet browser search engines or PubMed. Herein, we introduce a surface plasmon resonance database, www.sprdatabase.info that contains technical details extracted from 5140 publications with surface plasmon resonance data. We also provide an analysis of experimental conditions preferred by different laboratories. These experimental variables can be searched within the database and help future users of this technology to design better experiments. Conclusion: Amine coupling and CM5 chips were the most common methods used for immobilizing proteins in surface plasmon resonance experiments. However, number of different chips, capture methods and buffer conditions were used by multiple investigators. We predict that the database will significantly help the scientific community using this technology and hope that users will provide feedback to improve and expand the database indefinitely. Publicly available information in the database can save a great amount of time and resources by assisting initial optimization and troubleshooting of surface plasmon resonance experiments

    QSAR STUDIES, AND IN SILICO ADME PREDICTION OF P-AMINOSALICYLIC ACID DERIVATIVES AS NEURAMINIDASE INHIBITORS

    Get PDF
    QSAR analysis on a set of  synthesized p-Aminosalysilic Acid derivatives analogues tested growth inhibitory antiviral activity was performed by using MLR procedure. The activity contribution of these compounds were determined from regression equation and the validation procedures to analyze the predictive ability of QSAR models were described.The results are discussed on the basis of statistical data. High agreement between experimental  and predicted antiviral activity inhibitory values are obtained. The results revealed the significant roles of topological, geometrical and substituent electronic descriptor parameters on the inhibitory activitypIc50 of coumarin derivative analogues of the studied moleculesKey Words: QSAR, Antiviral Activity, ML

    A surface plasmon resonance study of the intermolecular interaction between Escherichia coli topoisomerase I and pBAD/Thio supercoiled plasmid DNA

    Get PDF
    To date, the bacterial DNA topoisomerases are one of the major target biomolecules for the discovery of new antibacterial drugs. DNA topoisomerase regulates the topological state of DNA, which is very important for replication, transcription and recombination. The relaxation of negatively supercoiled DNA is catalyzed by bacterial DNA topoisomerase I (topoI) and this reaction requires Mg(2+). In this report, we first quantitatively studied the intermolecular interactions between Escherichia coli topoisomerase I (EctopoI) and pBAD/Thio supercoiled plasmid DNA using surface plasmon resonance (SPR) technique. The equilibrium dissociation constant (Kd) for EctopoI-pBAD/Thio interactions was determined to be about 8 nM. We then studied the effect of Mg(2+) on the catalysis of EctopoI-pBAD/Thio reaction. A slightly higher equilibrium dissociation constant (~15 nM) was obtained for Mg(2+) coordinated EctopoI (Mg(2+)EctopoI)-pBAD/Thio interactions. In addition, we observed a larger dissociation rate constant (kd) for Mg(2+)EctopoI-pBAD/Thio interactions (~0.043 s(-1)), compared to EctopoI-pBAD/Thio interactions (~0.017 s(-1)). These results suggest that enzyme turnover during plasmid DNA relaxation is enhanced due to the presence of Mg(2+) and furthers the understanding of importance of the Mg(2+) ion for bacterial topoisomerase I catalytic activity

    Localization of Mycobacterium tuberculosis topoisomerase I C-terminal sequence motif required for inhibition by endogenous toxin MazF4

    Get PDF
    Only about half the multi-drug resistant tuberculosis (MDR-TB) cases are successfully cured. Thus, there is an urgent need of new TB treatment against a novel target. Mycobacterium tuberculosis (Mtb) topoisomerase I (TopA) is the only type IA topoisomerase in this organism and has been validated as an essential target for TB drug discovery. Toxin-antitoxin (TA) systems participate as gene regulators within bacteria. The TA systems contribute to the long-term dormancy of Mtb within the host-cell environment. Mtb’s toxin MazF4 (Rv1495) that is part of the MazEF4 TA system has been shown to have dual activities as endoribonuclease and topoisomerase I inhibitor. We have developed a complementary assay using an Escherichia coli strain with temperature-sensitive topA mutation to provide new insights into the MazF4 action. The assay showed that E. coli is not sensitive to the endoribonuclease activity of Mtb MazF4 but became vulnerable to MazF4 growth inhibition when recombinant Mtb TopA relaxation activity is required for growth. Results from the complementation by Mtb TopA mutants with C-terminal deletions showed that the lysine-rich C-terminal tail is required for interaction with MazF4. Site-directed mutagenesis is utilized to identify two lysine residues within a conserved motif in this C-terminal tail that are critical for MazF4 inhibition. We performed molecular dynamics simulations to predict the Mtb TopA-MazF4 complex. Our simulation results show that the complex is stabilized by hydrogen bonds and electrostatic interactions established by residues in the TopA C-terminal tail including the two conserved lysines. The mechanism of Mtb TopA inhibition by MazF4 could be useful for the discovery of novel inhibitors against a new antibacterial target in pathogenic mycobacteria for treatment of both TB and diseases caused by the non-tuberculosis mycobacteria (NTM)

    Effect of noise on support vector machine based fault diagnosis of IM using vibration and current signatures

    No full text
    This paper analyzes the effect of noise on support vector machine (SVM) based fault diagnosis of IM (IM). For this, a number of mechanical (bearing fault, unbalanced rotor, bowed rotor and misaligned rotor) and electrical faults (broken rotor bar, stator winding fault with two severity levels and phase unbalance with two severity levels) of IM are considered here. The vibration and current signals are used here for the diagnosis. Different experiments were performed in order to generate these signals at various operating condition of IM (Speed and Load). Time domain feature are then extracted from the raw vibration and current signals obtained from the experiments. Then, the noise are added in the raw signals and the same features are extracted from this corrupted signals. The features from the original and corrupted signals are used to feed the classifier. The one-versus-one multiclass SVM are used here to perform multi-fault diagnosis. The comparative analysis of performance of the SVM classifier using data with and without noise is presented

    Thermodynamic Study of Mo(II)-Penicillins

    No full text
    200-20
    corecore