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ABSTRACT OF THE DISSERTATION 

MULTIMODE ANALYSIS OF NANOSCALE BIOMOLECULAR 

INTERACTIONS 

by 

Purushottam Babu Tiwari 
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Miami, Florida 

Professor Yesim Darici, Major Professor 

 Biomolecular interactions, including protein-protein, protein-DNA, and protein-

ligand interactions, are of special importance in all biological systems. These interactions 

may occer during the loading of biomolecules to interfaces, the translocation of 

biomolecules through transmembrane protein pores, and the movement of biomolecules 

in a crowded intracellular environment. The molecular interaction of a protein with its 

binding partners is crucial in fundamental biological processes such as electron transfer, 

intracellular signal transmission and regulation, neuroprotective mechanisms, and 

regulation of DNA topology. In this dissertation, a customized surface plasmon 

resonance (SPR) has been optimized and new theoretical and label free experimental 

methods with related analytical calculations have been developed for the analysis of 

biomolecular interactions.   

Human neuroglobin (hNgb) and cytochrome c from equine heart (Cyt c) proteins 

have been used to optimize the customized SPR instrument. The obtained Kd value (~13 

µM), from SPR results, for Cyt c-hNgb molecular interactions is in general agreement 

with a previously published result. The SPR results also confirmed no significant impact 
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of the internal disulfide bridge between Cys 46 and Cys 55 on hNgb binding to Cyt c. 

Using SPR, E. coli topoisomerase I enzyme turnover during plasmid DNA relaxation was 

found to be enhanced in the presence of Mg2+. In addition, a new theoretical approach of 

analyzing biphasic SPR data has been introduced based on analytical solutions of the 

biphasic rate equations. 

In order to develop a new label free method to quantitatively study protein-protein 

interactions, quartz nanopipettes were chemically modified. The derived Kd (~20 µM) 

value for the Cyt c-hNgb complex formations matched very well with SPR measurements 

(Kd ~16 µM). The finite element numerical simulation results were similar to the 

nanopipette experimental results. These results demonstrate that nanopipettes can 

potentially be used as a new class of a label-free analytical method to quantitatively 

characterize protein-protein interactions in attoliter sensing volumes, based on a charge 

sensing mechanism. 

Moreover, the molecule-based selective nature of hydrophobic and nanometer 

sized carbon nanotube (CNT) pores was observed. This result might be helpful to 

understand the selective nature of cellular transport through transmembrane protein 

pores.  
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CHAPTER 1:  INTRODUCTION 

Biomolecular interactions including, protein-protein, protein-DNA, and protein-

ligand interactions, are of special importance in all biological systems and processes. 

These interactions occur during the loading of biomolecules to interfaces [1], the 

translocation of biomolecules through transmembrane protein pores [2,3], and the 

movement of biomolecules in a crowded intracellular environment [4,5]. The molecular 

interaction of a protein with its binding partners has great significance in fundamental 

biological processes such as electron transfer [6], intracellular signal transmission and 

regulation [7], neuroprotective mechanisms [8], and regulation of DNA topology [9,10].  

A detailed analysis of these interactions allows us to understand the role of protein 

molecules in fundamental intracellular processes, translocation and complex formation, 

and to determine the affinity of proteins to their binding partners.  

One of the major goals of this dissertation is to optimize a customized surface 

plasmon resonance (SPR) instrument for the quantitative analysis of the fundamental 

biomolecular interactions. For this purpose, human neuroglobin (hNgb) and cytochrome c 

from equine heart (Cyt c) proteins have been used as model systems. Following the 

successful detection of Cyt c-hNgb interactions, the optimized SPR instrument was used 

to quantitatively study protein-DNA interactions. Molecular interaction between 

Escherichia coli topoisomerase I (EctopoI) and pBAD/Thio supercoiled plasmid DNA 

has been successfully investigated. DNA topoisomerases change the topology of DNA, 

which is crucial in transcription, translation and recombination [11]. 

Another major purpose of this dissertation was to introduce a new label free 

method for the analysis of biomolecular interaction. In order to achieve this goal, quartz 
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nanopipettes were chemically modified to quantitatively study Cyt c-hNgb protein-

protein interaction in an attoliter sensing volumes, based on a charge sensing mechanism.  

Besides experimental methods of studying biomolecular interactions, this 

dissertation also aims at presenting new theoretical approaches and related analytical 

calculations for the analysis and understanding of experimental results. To this end, a 

theoretical approach for the analysis of the biphasic SPR data has been introduced based 

on analytical solutions. Moreover, finite element based numerical simulations have also 

been performed to understand the nanopipette experimental results.  

In addition to above method biomolecular interactions, another aspect of this 

dissertation was to investigate the molecular translocation through nanopores that mimic 

the protein pores inside the body. Carbon nanotube (CNT) based nanoporous membrane 

device was used to study the translocation of small charged molecules.  

The following sections in this chapter present an overview of the fundamental 

biomolecular interactions and a brief explanation of research projects and results.  

1.1: Interaction mechanisms of proteins with their binding partners 

Despite complexity in structure, a protein molecule recognizes its binding partner 

as a result of the specific interaction [12]. As explained below, several intermolecular 

interaction mechanisms, specific or non-specific, play crucial roles in the complex 

formation between a protein molecule and its binding partner.  

1.1.1: Electrostatic interaction 

Electrostatic interaction takes place between two oppositely charged molecules 

and it is long range in nature [13], which typically depends upon the net charge of protein 

molecules [14]. The electrostatic interaction is ubiquitous in many biomolecular 
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interactions [15]. The electrostatic free energy (∆∆Gୣ୪ୣୡୟ୪୪ ) for the interaction of charged 

biological macromolecules, A and B, is given by Equation 1.1 [16]: 

                  ∆∆Gୣ୪ୣୡୟ୪୪ = ଵଶ∑ q୧Φ୅:୆(r୧) − ଵଶ∑ q୧Φ୅(r୧) −୧(୅) ଵଶ∑ q୧Φ୆(r୧)୧(୆)୧(୅:୆)      (1.1) 

where, A: B represents the complex formation between A and B, q୧  the electric charge, 

and Φ(r୧) is the electric potential.   

1.1.2: Dipole-dipole interaction 

Two opposite charges with equal magnitude separated at a distance constitute an 

electric dipole. The alignment of molecular dipoles is one of the several possibilities 

responsible for the complex formation between a protein and its binding partner [17]. The 

interaction energy, with the second order correction, for two freely rotating dipoles is 

given by Equation 1.2 [18]:   

                                                      U = − ଶஜభమஜమమଷ(ସ஠க౥)మ୩୘୰ల                                                    (1.2) 

 where, μଵand	μଶ are the dipole moments of two molecules,	ε୭ is the permittivity of the 

vacuum, 	k is the Boltzmann constant,	T is absolute temperature, and r is the distance 

between the molecules. The dipole moment of proteins have been measured previously 

by Takashima et al. and Antosiewicz et al. [19,20].  

1.1.3: Van der Waals interaction 

Van der Waals interactions are a consequence of a random fluctuation of the 

electronic distribution in an atom that leads to transient electric dipoles [21]. These 

interactions are short-range in nature when compared to the molecular dimensions of 

proteins. These interactions are attractive and the strength of interactions increases as the 
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distance between molecules or distance from interacting surface in solution decreases 

[22]. The Van der Waals interaction is the sum of the interaction between two permanent 

dipoles (Keesom contribution), between a permanent dipole and a corresponding induced 

dipole (Debye contribution), and between two induced dipoles (London dispersion 

contribution) [22,23].  

1.1.4: Hydrogen Bonding 

Hydrogen bonding occurs because of the weak electrostatic interaction between 

hydrogen and electronegative atom like oxygen. Several terminal groups such as –NH2, -

C=O, and –OH in proteins are capable of establishing a hydrogen bond [21]. The binding 

interface of proteins is comparatively more hydrophilic than the interior [24]. There are 

about 1.42 charged groups per 100Å2 of protein binding surface [25]. Therefore, the 

binding interface generally forms hydrogen bonds. On average, there are 10.4 hydrogen 

bonds in one binding interface. The hydrogen bonding, therefore, plays a dominant role 

in specific interaction of protein molecules with their binding partners [24].    

1.1.5: Hydrophobic interaction 

Hydrophobic interaction is the aggregation of non-polar molecules in an aqueous 

medium [26] because of the disruption of hydrogen bonds between water molecules. The 

release of water molecules from the protein-ligand binding site, because of hydrophobic 

interaction, plays an important role in the complex formation between the binding 

partners, changing the total entropy and total free energy [27]. Hydrophobicity is the key 

factor for the inter-protein complex stabilization [28].     

1.1.6: Transient covalent bonding 

In addition to above-mentioned non-covalent interactions, a protein molecule may  
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kୢ 

kୟ [A] + [B] [AB] 

exhibit a transient covalent interaction with its binding partner. More specifically, DNA 

topoisomerases form a transient covalent bond while making a complex with DNA [29]. 

The cleavable covalent complex between topoisomerase and DNA is formed via 

transesterification of active site tyrosyl and a phosphate group of DNA. The breakage of 

the covalent complex follows with another transesterification [10].  The cutting and 

rejoining of the DNA strands via the formation of cleavable covalent complex is shown 

in Figure 1.1. The DNA topoisomerases change the topological stage of DNA [9,10], 

which is very important in DNA replication, transcription, and recombination [11]. 

 

 

 

 

 

 

 

 

 

Figure 1.1: Formation and breakage of transient covalent bond between DNA topoisomerase and DNA. 
The cartoon scheme for the DNA topoisomerase is adapted from protein data bank (PDB) entry 1ECL. 
 
1.2: Binding models for biomolecular interactions 

1.2.1: Monophasic (1:1 Langmuir) binding model of biomolecular interaction 

The monophasic binding model is considered when analyte-ligand complex is 

formed via single site binding. A simple biomolecular reaction corresponding to the 

monophasic binding model is given by [30,31]: 
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and the corresponding association and dissociation rate equations are given by:  

                               
ୢ[୅୆]ୢ୲ = kୟ[A][B] − kୢ[AB]  

    (1.3) 

 
ୢ[୅୆]ୢ୲ = −kୢ[AB]    

where,	[A] corresponds to the analyte concentration	(C) and assumed to be constant, [B] 
corresponds to the ligand concentrations, available surface binding sites, kୟ  is the 

association rate constant, and kୢ  is the dissociation rate constant. With 	[B] = [B୭] −	[AB], where [B୭] corresponds to the initial available surface binding sites, Equation 1.3 

can be rewritten as: 

ୢ[୅୆]ୢ୲ = Ckୟ[B଴] − (kୟC + kୢ)[AB]  
                  (1.4) ୢ[୅୆]ୢ୲ = −kୢ[AB]  

1.2.2: Biphasic binding model  
  
 

 

 

 

 

 

Figure 1.2: Cartoon schemes: (a) the two-step conformational change model (Model 1), (b) the 
heterogeneous ligand model (Model 2), and (c) the bivalent ligand model (Model 3). The ribbon-shaped 
arrow indicates the analyte flow over ligand immobilized sensor surface. 
 
 

There are several possibilities with the biphasic interactions with complicated data 

analysis as compared to the monophasic model. Figure 1.2 shows the schematic 

representation of the three biphasic models governed by the coupled linear differential 

rate equations presented in this dissertation. 
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[AB]  kଶ kିଶ 
[A] + [B] [AB∗] kୟଵ kୢଵ 

1.2.2.1: Two-step conformational change model  

The two-step conformational change model is applicable when the analyte-ligand 

complex undergoes a conformational change to stabilize the complex [32,33]. The 

biphasic reaction for the two-step conformational change model can be written as: 

 

    

and the corresponding rate equations are given by: 

ୢ[୅୆∗]ୢ୲ = kୟଵ[A][B] − kୢଵ[AB∗] − kଶ[AB∗] + kିଶ[AB]  
 (1.5) ୢ[୅୆]ୢ୲ = kଶ[AB∗] − kିଶ[AB]  

 where, [AB∗] and [AB] represent the intermediate stage and the final docked stage of the 

complex, respectively. In this case, the second association rate constant (kଶ) is different 

from the normal association rate constant, and its unit is s-1, not M-1s-1 [34]. Using	[B] =[B଴] − [AB∗] − [AB], Equation 1.5 can be expressed as given below: 

ୢ[୅୆∗]ୢ୲ = kୟଵC[B଴] − (kୟଵC + kୢଵ + kଶ)[AB∗] − (kୟଵC − kିଶ)[AB]  
  (1.6) ୢ[୅୆]ୢ୲ = kଶ[AB∗] − kିଶ[AB]           

1.2.2.2: Heterogeneous ligand model  

 The heterogeneous ligand model explains two independent bindings of analytes to 

immobilized ligands [35,36] as represented by the following biphasic reactions:  

 

 

 
 
 

[A] + [B] [AB] kୟଵ kୢଵ 

[A] + [Bᇱ] [ABᇱ] kୟଶ kୢଶ 
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and the corresponding rate equations are given by: 
 ୢ[୅୆]ୢ୲ = kୟଵ[A][B] − kୢଵ[AB]  

    (1.7) ୢൣ୅୆ᇲ൧ୢ୲ = kୟଶ[A][Bᇱ] − kୢଶ[ABᇱ] 
Using [B] = [B଴] − [AB], and [Bᇱ] = [B଴ᇱ ] − [ABᇱ], Equation 1.7 can be rewritten 

as seen below in Equation 1.8: 

ୢ[୅୆]	ୢ୲ = kୟଵC[B଴] − (kୟଵC + kୢଵ)[AB]  
(1.8) ୢൣ୅୆ᇲ൧	ୢ୲ = kୟଶC[B଴ᇱ ] − (kୟଶC + kୢଶ)	[ABᇱ]  

1.2.2.3: Bivalent ligand model  

The bivalent ligand model accounts for the two sequential analyte-ligand bindings 

with different affinity [37-39]. The biphasic reaction for the bivalent model can be 

described by the following reactions: 

       

 

 

and the corresponding rate equations are given by: 

ୢ[୅భ୆]ୢ୲ = kୟଵ[A][B] − kୢଵ[AଵB] − kୟଶ[A][AଵB] + kୢଶ[AଶB]  
 (1.9) ୢ[୅మ୆]ୢ୲ = kୟଶ[A][AଵB] − kୢଶ[AଶB]         

Using [B] = 2[B୭] − [AଵB] − 2[AଶB], above equation can be expressed as given 

in Equation 1.10.  

ୢ[୅భ୆]ୢ୲ = 2kୟଵC[B୭] − (kୟଵC + kୟଶC + kୢଵ)[AଵB] − (2kୟଵC − kୢଶ)[AଶB]  
(1.10) ୢ[୅మ୆]ୢ୲ = kୟଶC[AଵB] − kୢଶ[AଶB]  

		 [A] + [B] [AଵB] 
[A] + [AଵB] [AଶB] 

kୟଵ kୢଵ kୟଶ kୢଶ 
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Here, [B୭]  corresponds to the concentration of the ligands, with each ligand 

having two binding sites. 

1.3: Translocation through transmembrane protein pores 

There are transporter proteins on the biological membrane, either categorized as 

channels (pores) or carriers [40,41]. Stimulated chemically or electro-physiologically, the 

channel proteins allow the solute to pass through selective pores whereas the carrier 

proteins allow substrate translocation under concentration gradient across the membrane 

[42]. Membrane proteins typically have hydrophobic and polar surfaces in aqueous 

environment [43]. Translocation of polymers through protein pores has been previously 

studied both theoretically [44,45] and experimentally [46,47]. The protein pores have 

variable diameter up to several nanometers [44,46,48-51]. Translocation of charged or 

neutral molecules, polymers, and polypeptides through these nanometer sized protein 

pores (channels) is of special importance in fundamental life processes [44,52] including, 

regulation of nutrients and waste products [53].   

1.4: Research projects and results 

A surface plasmon resonance (SPR) instrument was optimized and used to 

investigate protein-protein and protein-DNA interactions. Various chemical surface 

modifications and characterization strategies were followed in order to prepare sensor 

chips for their use in SPR. Human neuroglobin (hNgb) and cytochrome c from equine 

heart (Cyt c) has been used as a model system to optimize the SPR instrument for its use 

to investigate protein-protein molecular interaction. A Kd value of ~13 µM was obtained 

for Cyt c-hNgb interactions using phosphate buffer at pH 7.0. A similar Kd value of (~45 

µM) for Cyt c binding to dithiothreitol (DTT) reduced hNgb in Tris buffer has been 
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reported previously [17]. On the basis of the SPR results, it has been observed that the 

CD-loop flexibility, in hNgb, does not significantly affect its affinity to Cyt c.  

The use of the optimized custom-built SPR system was extended to investigate 

the molecular interaction between E.coli topoisomerase I (EctopoI) and pBAD/Thio 

supercoiled plasmid DNA (pBAD/Thio). The study is the first biophysical investigation 

between these molecules in terms of quantitative determination of the interaction. 

EctopoI removes excess negative supercoils to regulate DNA supercoiling [54]. The 

regulation of DNA topology has significance in biological processes such as 

transcription, translation, and recombination [11]. The catalytic activity of topoisomerase 

I (topoI) requires Mg2+ [55]. The equilibrium dissociation constant (Kୢ) values of ~8 nM 

and ~15 nM in the presence and absence of Mg2+ for EctopoI-pBAD/Thio interactions 

were determined, respectively. Moreover, a larger dissociation rate constant (kd) was 

obtained for interaction between Mg2+ bound EctopoI and pBAD/Thio supercoiled 

plasmid DNA. These SPR results revealed that the enzyme turnover would be enhanced 

in the presence of Mg2+. 

The determination of rate constants, the association rate constant (kୟ) and the 

dissociation rate constant (kୢ), requires the fitting of SPR sensorgrams (profiles) mainly 

with single or double exponential functions. The SPR data analysis by fitting with single 

exponential function is simple and straightforward. However, there is no simple 

procedure to analyze the biphasic SPR sensorgrams. The dissertation, therefore, presents 

a new analysis procedure for the biphasic SPR sensorgrams, using a theoretical approach. 

The new method is more straightforward than currently existing SPR data fitting 
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procedures to choose the underlying biphasic interaction and to perform further analysis, 

including the determination of the rate constants. 

To develop a new method to quantitatively investigate protein-protein interaction, 

quartz nanopipettes with pore diameters of ~37 nm were chemically modified to 

immobilize protein molecules. Using these modified nanopipettes, Cyt c-hNgb molecular 

interactions was investigated in attoliter sensing volumes, based on a charge sensing 

mechanism. The Kd value of Cyt c-hNgb complex formation (Kd ~20 µM) was found to 

be very similar to the Kd value obtained from SPR measurements. Finite element based 

numerical simulations were also performed in order to understand the fundamental 

charge sensing mechanism. Using the experimental conditions, the simulation results 

were similar to the experimental nanopipette. Altogether, these results suggest that quartz 

nanopipettes are a new analytical tool to quantitatively study protein-protein interactions.  

Moreover, this dissertation presents the investigation of the translocation of small 

charged molecules through CNT based nanopores. Carbon nanotube can be regarded as a 

model system to help understand the transporter proteins on the cell membrane that work 

in aqueous environments with hydrophobic inner walls and nanometer channel sizes [56]. 

Under the effect of an applied electric field, an obvious translocation of ferricyanide 

(Fe(CN)଺ଷି) molecules was observed whereas the translocation of ruthenium bipyridine 

(Ru(bpy)ଷଶା) was not as prominent as that of ferricyanide. Depending on the molecular 

structure, the pi-pi interaction between the rings of ruthenium bipyridine molecules and 

CNT surface was found to be the factor that hindered translocation of ruthenium 

bipyridine molecules, compared to ferricyanide. These results might be helpful to 

understand the selective nature of the intracellular transport processes [57].  
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In summary, this dissertation presents optimization of a customized SPR 

instrument for the quantitative study of protein-protein and protein-DNA molecular 

interactions. Based on analytical solutions, a new theoretical approach of analyzing 

biphasic SPR data has also been presented. With experimental and simulation results, this 

dissertation introduces a new label free analytical method to quantitatively study protein-

protein interaction in attoliter sensing volumes based on a charge sensing mechanism. 

This dissertation also presents the results for the translocation of small charged molecules 

through CNT nanopores. These nanopores are very analogous to transmembrane protein 

pores in terms of hydrophobicity and nanometer sized pore diameter. Altogether, this 

dissertation will, therefore, be a valuable contribution to the research on the multimode 

analysis of nanoscale biomolecular interactions.  
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CHAPTER 2:  METHODS 

This dissertation presents label free experimental techniques, surface plasmon 

resonance (SPR) and nanopore techniques, and theoretical simulations along with related 

analytical calculations for the analysis of the fundamental biomolecular interactions. The 

nanopore technique includes the use of quartz nanopipettes and carbon nanotube (CNT) 

pores. This chapter presents all the methods, experimental and theoretical, which have 

been used to successfully accomplish this dissertation.  

2.1: Surface plasmon resonance (SPR) 

 A customize SPR system was optimized in this dissertation in order to investigate 

the label-free detection of the biomolecular interactions, including cytochrome c-human 

neuroglobin and E.coli topoisomerase I-supercoiled DNA interactions. The following 

subsections in this chapter explain the instrumentation, data collection, and sensor surface 

modification and characterization.   

2.1.1: Instrumentation and data collection 

The SPR system is comprised of a diode laser (Thor Labs, 4.5 mW and 

λ=635nm), as a light source, and a single array photodetector (TSL3301EVM, TAOS). 

Polycrystalline gold chips (50 nm gold layer deposited over a 2.5 nm titanium adhesion 

layer coated on 18mm x 18mm cover slip glass slides) were purchased from Platypus 

Technologies, LLC. The gold coated chip was used to prepare the SPR sensor. Each chip 

was cut into two pieces before processing or any measurements. The properly cleaned 

gold chip was chemically modified using various modification strategies (as explained 

below) for its use as SPR sensor. The modified sensor chip was placed over the BK7 

semicircular cylindrical prism (Melles Griot) flat surface using a thin layer of refractive 
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index matching fluid (immersion oil n=1.515)[1] and a customized Teflon flow cell was 

mounted above the sensor chip. The Teflon flow cell has four sets of flow channels to 

carry out four independent SPR measurements under similar conditions. This allows to 

monitor the reproducibility of the SPR results. 

The p-polarized light from the diode laser passes through the BK7 prism followed 

by the total internal reflection (TIR) from the metal (gold)-dielectric interface. The 

intensity of reflected light is detected by a photodetector and is collected using a program 

written in C++. At the condition of resonance, the intensity of reflected light reduces 

sharply. Any change in refractive index in the surrounding of the metal surface is 

reflected as the change in the SPR angle, the angle at minimum reflectance intensity [1-

3]. The change in SPR angle for each refractive index variation leads to the change in 

pixel position on the detector. The centroid method was used to calculate the center-of-

mass position of the certain portion of SPR dip below a certain threshold [4,5]. The dip 

position corresponding to each SPR angle was calculated by using Equation 2.1 [5]: 

            X = ୶ୢ(୦ି୍(୶))׬୶(୦ି୍(୶))ୢ୶׬                                             (2.1) 

where, X is an averaged pixel position, x is the pixel position of a diode, h is the threshold 

value, and I(x) is the light reflectance intensity as a function of x. The value of X in pixel 

units was then plotted as a function of time to generate SPR sensorgrams for further data 

analysis.  

2.1.2: Sensor surface modification and characterization 

The gold chip was always cleaned using oxygen plasma at 10.2 W RF power for 

40 s followed by hydrogen flaming for 20 s, to reduce surface roughness [6], and then 
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incubated in thiol solutions, prepared in ethanol, for the chemical modifications. The 

different chemical modifications and characterization strategies of the gold surface are 

explained below. 

2.1.2.1: Gold surface modification with 16-mercaptohexadecanoic acid (MHA) and 11-

mercapto-1-undecanol (MUO) 

 The cleaned gold chip was incubated overnight in the 1:1 (v/v) mixture of 1 mM 

MHA and 1 mM MUO (both in 200 proof ethanol) to prepare a self-assembled 

monolayer (SAM) on the cleaned gold surface. The chip was then rinsed with ethanol, 

followed by Deionized (DI) water, and dried with argon. The SAM has the reactive 

carboxyl terminal groups, which can be activated by treating the mixed solution, in 

deionized (DI) water, of N-hydroxysuccinimide (NHS) and N-(3-dimethylaminopropyl)-

N’-ethylcarbodiimide hydrochloride (EDC). The treatment forms reactive NHS esters on 

the gold surface that form covalent amid linkage with protein primary amine groups. 

2.1.2.2:  Gold surface modification with anti-His antibody 

The gold chip was modified with mouse anti-His antibody (Invitrogen) in order to 

immobilize histidine tagged proteins. After cleaning, the gold chip was immersed in 5 

mM 2-Aminoethanethiol hydrochloride (Acros Organics) in ethanol overnight at 4oC to 

form a SAM of cysteamine (CA) on the gold surface. The CA modified surface was 

rinsed with ethanol followed by DI water, treated with 2-5% glutaraldehyde (GA) 

solution (in DI water) followed by 2 µg/ml anti-His antibody solution in phosphate buffer 

saline (PBS) at pH 7.4. The functionalized chip surface was then treated with 1 M 

ethanolamine (pH 8.0) to quench excess aldehyde groups. GA molecules crosslink the 
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amines of CA SAM with the primary amine groups of anti-His antibody molecules used 

to capture His-tagged proteins.  

2.1.2.3: Gold surface modification with Tri (ethylene glycol) mono-11-mercaptoundecyl 

ether (PEG-thiol) and 2-{2-[2-(1-mercaptoundec-11-yloxy)-ethoxy]-ethoxy}-ethoxy 

nitrilotriacetic acid TFA salt (NTA-thiol) 

 The hydrogen flamed chip was immediately immersed in mixed thiol solution 

(1:9 V/V mixture of 1 mM NTA-thiol and 1 mM PEG-thiol in ethanol, respectively) and 

incubated overnight. The chip was then copiously rinsed with ethanol and DI water to 

remove physically adsorbed thiol molecules and dried with argon. The sensor surface was 

activated using 40 mM aqueous solution of nickel (II) sulfate. The Ni2+-NTA surface was 

used to capture histidine tagged proteins.  

2.1.2.4: Characterization of gold surface modification 

The successful chemical modification of the gold surface (formation of SAM) 

was confirmed using electrochemical impedance spectroscopy (EIS). A commercial 

electrochemical workstation (CHI760D, CH Instruments, Inc., USA) using a three-

electrode system in a cuntomized Teflon electrochemical cell was used to measure EIS 

data. The volume of the Teflon electrochemical cell was 1.49 cm3. The modified gold 

surface was used as a working electrode, Ag/AgCl electrode (prepared by immersion of 

Ag wire in bleach for 30 minutes) was used as a reference electrode, and 

Platinum/Iridium wire (0.25 mm in diameter coiled spirally) was used as a counter 

electrode. The counter electrode was cleaned by sonication in DI water and hydrogen 

flaming before its use. A DC potential EDC= + 219 mV (formal potential of the redox 

couple, Fe	(CN)଺ିଷ ିସ⁄ , in the solution) was applied to the working electrode. The redox 
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In Equation 2.2, V is the volume of the water drop, r is the radius of the drop, and θ is the 

contact angle.   

2.2: Quartz nanopipettes for the quantitative study of protein-protein interactions 

 The fabrication, characterization and chemical surface modification of quartz 

nanopipettes are explained below. 

2.2.1: Quartz nanopipette fabrication and characterization 

The quartz capillary tubes with filament (QF100-50-7.5, Sutter Instrument) were 

first cleaned by piranha (caution: Piranha solutions are highly corrosive and must be 

handled with extreme caution) for 30 minutes, then rinsed with deionized water, and then 

dried in oven at 120oC for 15 minutes. Quartz nanopipettes were fabricated from these 

cleaned capillary	 tubes by using a laser based pipette puller (P-2000, Sutter Instrument) 

with the following parameters: HEAT=750, FIL=4, VEL=60, DEL=170, PUL=180.  

 Scanning electron microscopy (SEM) and pore conductance measurement were 

carried out in order to characterize the nanopipette pore geometry. 

2.2.1.1: SEM  

 Field emission scanning electron microscope (FE-SEM, JEOL JSM-6330F) was 

used to characterize the nanopipette geometry. Figure 2.2a and 2.2b represent SEM 

characterization for the geometry of the nanopipette tip. The accelerating voltage was 

varied from 3 kV to 20 kV, the working distance from 8 mm to 39 mm, and the emission 

current was always set as 12 µA. A thin layer of gold was deposited using auto sputter 

coater (PELCOSC-7) to make the surface conducting, to avoid the charging effect during 

SEM measurements. The half cone angle of fabricated nanopipettes was estimated using 

SEM, and the diameter was determined using this half cone angle. 



23 
 

2.2.1.2: Measurement of pore conductance 

Ionic conductance of the nanopipette pore was also measured, from I-V curve, to 

estimate the pore diameter. The measurement setup is shown in Figure 2.2c. The Keithley 

2636A sourcemeter (Keithley Instruments), with a scan rate of 50 mV/s, was used to 

record I-V curves. All measurements were performed at room temperature. The 

measurement setup was housed in a home-built Faraday cage to reduce external noise. 

Ag/AgCl electrodes (prepared by dipping clean 0.2 mm diameter Ag wires in bleach for 

30 minutes) were used in all the ionic current measurements. 

If the surface charge can be ignored, then the inner diameter (D ) of the 

nanopipette can be derived using the half cone angle (θ) and the pore conductance	(G୮), 

using Equation 2.3. 

                                                    D = ଶୋ౦୩ ቂ ଵ஠୲ୟ୬஘ቃ                        (2.3) 

where, k is the conductivity of electrolyte (25 mM KCl with 2.5 mM PB, pH 7.0).  

 

 

 

 

 

 

 

 

Figure 2.2: Nanopipette fabrication and ionic current measurement. (a-b) Low (a) and high resolution (b) 
SEM images of an as-fabricated nanopipette tip. To avoid charging, about 3-4 nm thick gold was coated on 
the pipette before imaging. (c) The scheme of the ionic current measurement setup. 
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2.2.2: Surface functionalization and characterization 

A schematic of the chemical surface modification method is shown in Figure 2.3. 

The modification was finished in 5 steps: (1) 3-4 hours incubation of the nanopipette tip 

at room temperature in APTES (5% V/V in ethanol) inside a partially sealed beaker, 

which is placed in a desiccator connected to a lab vacuum line [11]; (2) 1-2 hours 

incubation in glutaraldehyde (0.5-2 V/V% in DI water) at room temperature; (3) 

Overnight incubation at 4oC in a standard phosphate buffered saline (PBS, pH 7.4) 

solution containing anti-His antibodies (2 µg/ml); (4) 30 minutes incubation in 

ethanolamine (1 M in DI water, pH 8.0) solution at room temperature to quench excess 

aldehyde terminal groups; and (5) Overnight incubation at 4oC in 20 µM N-terminus His-

tagged hNgb in PB (10 mM, pH 7.0). The nanopipettes were rinsed repeatedly with DI 

water and followed by the appropriate buffer solutions between the modification steps.  

Figure 2.3: Schematic of the anti-His antibody surface modification method. 



25 
 

The following methods were used to characterize the chemical surface medication 

of the quartz nanopipette. 

2.2.2.1: Ion current rectification (ICR) 

 Current-voltage data were used to determine ICR. As a consequence of its conical 

shape, the ionic current through the nanopipette is extremely sensitive to surface charge 

variation near the nanopipette tip [12]. Because of this fact, the I-V curves through these 

nanopipettes are not linear in bigger bias range bigger than 15 mV. The current at one 

bias polarity is larger than the current at the opposite bias polarity with the same 

magnitude. The phenomenon is regarded as ICR [13]. The chemical surface modification 

with (3-aminopropyl) triethoxysilane (APTES) and hNgb alters the nanopipette surface 

charge. To quantitatively compare the rectification, the definition of ICR (r) was used 

as	r = log ቚ୍శ୍షቚ [14]. 

2.2.2.2: Noise analysis 

Noise analysis was also performed to characterize the nanopipette surface 

modification using current-time (I-t) traces. The I-t traces were measured by the Axon 

200B instrument (Molecular Devices Inc.) operated in voltage clamp mode. An Axon 

Digidata 1440A was used to record ionic current time traces. All measurements were 

performed at room temperature.  

The measurement setup, as shown in Figure 2.2c, was housed in a home-built 

Faraday cage, placed on an air floating mechanical table to reduce mechanical noise. The 

Ag/AgCl electrodes were used in all the ionic current measurements. The noise power 

spectrum density (PSD), S(f), was obtained by performing fast Fourier transformations 
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(FFT) of the current time trace (at V = -0.4V) for a nanopore, which were recorded at 250 

kHz sampling rate with a bandwidth of 100 kHz. The noise spectrum was obtained by 

plotting PSDs (S(f)/<I>2, where <I> is the average current) for the same nanopore before 

and after modification. The noise at low frequency regime (f <100 Hz), which is called 

the 1/f noise or flicker noise, was only focused. The origin of this noise is still in debate 

but is assumed to be related to fluctuations in the charge carrier and surface charge [15-

17].  The normalized S(f) in this frequency regime can be fitted by S(f)/<I>2=A/f, where 

A is the slope of the fitted curve.  

2.2.2.3: SPR 

 In addition to ICR and noise analysis, SPR measurements (Section 2.1) were 

monitored for the confirmation of real time chemical surface modifications. As 

mentioned in Section 2.1.2.2, CA molecules were used to chemically modify the gold 

surface to form a SAM. The modification is analogous to chemical modification of quartz 

with APTES since both modifications result in an amine terminal group for the antibody 

immobilization.   

2.3: Translocation through CNT nanopores 

 The following procedures were followed to investigate the translocation of small 

charged molecules through CNT nanopores. 

2.3.1: Dry etching 

A plasma RIE system (Harric Plasma, PDC-001) was used in dry etching. The 

etching time, gas selection and flow rate, and pressure were varied based on the etching 

results.  
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2.3.2: Wet chemical etching     

All wet chemical etching processes followed during the fabrication of CNT based 

nanoporous membrane device are explained below. 

2.3.2.1: Anisotropic KOH etching  

Forty-five percentage (w/w) potassium hydroxide (KOH) solution in DI water 

was used for anisotropic etching of Si <100> wafers. Typically the etching process was 

completed in more than 6 hours. The KOH solution was continuously heated and stirred 

at 95oC and 240 rpm, respectively, throughout the etching process. A Teflon holder was 

used to hold the wafer in the KOH solution during the etching process. The beaker with 

KOH solution was covered with a glass dish containing cold water to prevent the rapid 

vaporization of the KOH solution. After 6 hours, the wafer was taken out, cleaned with 

DI water, dried with argon gas, and carefully checked under optical microscope to 

confirm the successful etching of Si. If the wafer was observed under-etched, the etching 

process was continued again untill free standing SiN membrane (300 nm or 325 nm 

thick) was left.                    

2.3.2.2: PAN etching 

 The PAN etching solution was made with the mixture of phosphoric acid, acetic 

acid, nitric acid, and water, respectively, in the ratio of 16:1:1:2. This solution was used 

to remove the metal catalysts deposited for CNT growth. The PAN etching was 

performed at 45oC for 5 minutes. The successful completion of the PAN etching was 

confirmed using optical microscope. 

2.3.4: Fabrication of PDMS layer 

 A SYLGARD 184 silicone elastomer base and SYLGARD 184 silicone elastomer 
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curing agents, respectively, were mixed in the ratio of 10:1 (w/w). The mixture was kept 

in a desiccator connected to a continuous vacuum line untill the air bubbles were 

removed. The mixture was then poured on a petri dish and allowed to be cured at least 

overnight.  

2.3.5: Fabrication and characterization of nanoporous membrane device  

The following steps were followed in order to accomplish the fabrication of CNT 

based nanoporous membrane device to make it ready for the experiments. The Si/SiN 

substrate with vertically aligned CNTs grown (step 1), on free standing SiN membrane 

was used to fabricate the nanoporous membrane device. The CNTs were turned into a 

membrane via parylene coating after CNT growth (step 2). The parylene and free 

standing SiN membranes were etched, from the backside of CNT membrane using RIE 

(step 3) followed by PAN etching (step 4) in order to remove metal particles and used 

optical microscopy to confirm the successful etching. The substrate was then rinsed in DI 

water, dried with oxygen gas, and treated with the oxygen plasma (2–4 min, 7.2 W, 550–

600 mTorr) to etch excess parylene (step 5) in order to open the CNT ends. The 

successful etching of parylene was confirmed via optical microscopy. The substrate was 

then sandwiched in between parafilm layers (step 6), followed by polydimethylsiloxane 

(PDMS) layers (step 7), and then plastic cuvettes (step 8). Each parafilm layer, PDMS 

layer, and plastic cuvette was drilled to make a hole for the fluidic pathway. Finally, the 

sandwiched assembly was tightened between two flat squared aluminum slabs (step 9). 

The fabrication steps (steps 1 to 3) were finished at Arizona State University (ASU).    

Transmission electron microscopy (TEM) and SEM were used to characterize the 

CNTs. SEM was used to characterize the parylene coating (step 2) and etching (step 3). 
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These characterizations were accomplished at ASU in collaboration with Dr. Stuart 

Lindsay’s research group. Gold nanoparticles (AuNPs) were used to test the leakage of 

the nanoporous membrane device. Porosity measurements using a KCl diffusion method 

[10] was also carried out for the characterization of the membrane device.  

2.3.6: Data collection and analysis 

The following data collection and analysis procedures were followed in order to 

investigate the translocation of small charged molecules.  

2.3.6.1: Square wave voltammetry (SWV) 

 Square wave voltammetry was used in order to detect the small charged 

molecules translocated through CNT nanopores under the application of an electric field. 

In the current translocation study, two redox molecules, potassium hexacyanoferrate (III) 

and Tris (bipyridine) ruthenium (II) chloride were selected. The same electrochemical 

workstation and electrode assembly, as used in EIS measurements, was used in the SWV 

measurements with parameters: Initial potential = 0 V (for ferricyanide) and 0.6 V (for 

Ruthenium bipyridine), Final potential = 0.4 V to 0.6 V (for ferricyanide) and 1.4 V (for 

Ruthenium bipyridine), Increment = 0.004 V, Amplitude = 0.04 V, Frequency = 30 Hz, 

and Sensitivity = 1e-4 A/V. Typically, the redox molecules were dissolved in KCl 

solution. Therefore to detect the unknown concentration of the redox molecules in the 

solution, calibration curves were used, which were obtained by plotting peak current vs. 

the known concentration of the same redox molecule in the KCl solution (same KCl 

concentration as used in translocation experiments). 
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2.3.6.2: UV-vis spectroscopy 

concentration of molecules in the solution, and to determine the concentration of 

translocated small ions as well as gold nanoparticles. For the determination of the 

concentration, Beer-Lambert law, was used which is given by Equation 2.4: A = C ∈ L         (2.4) 

where, A is the absorbance, ∈ is the extinction coefficient of molecule of interest, and	L is 

the path length, which is the length of quartz cuvette that I used during measurements. In 

my case,	L = 1	cm. 

2.3.6.3: Current-voltage (I-V) measurements 

The Keithley 2636A sourcemeter (Keithley Instruments) was used to collect I-V 

data. All measurements were performed at room temperature. The measurement setup 

was housed in a home-built Faraday cage to reduce external noise. Ag/AgCl electrodes 

(prepared by dipping clean 0.2 mm diameter Ag wires in bleach for 30 minutes) were 

used in all the ionic current measurements. A constant bias was applied using a home-

built LABVIEW software. 

2.4: Theoretical simulations  

 In addition to label free experimental methods, the following theoretical 

simulations were also performed in this dissertation.  

2.4.1: Simulation and analysis of biphasic SPR data 

 Mathematica software was used to simulate SPR sensorgrams, and Originpro 9.1 

to fit the simulated SPR profiles and to perform error analysis. The SPR sensorgrams 

were generated by directly substituting the rate constants into the analytical solutions of 

the rate equations at a random noise with a standard deviation of 1 RU. Random noise 
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was added in order to simulate the experimental noises. Five SPR association profiles 

were generated for each analyte concentration. The analyte concentration was set to zero 

during the simulation of the dissociation profiles. The dissociation profiles were 

simulated five times in total. 

2.4.2: Finite element based numerical simulations 

Numerical simulations were carried out using Poisson-Nernst-Planck (PNP) 

equations ollowing the finite element method using the software package COMSOL 

Multiphysics 4.3b with chemical reaction engineering and AC/DC modules. The whole 

computation domain was discretized into free triangular elements and rigorous mesh 

refinements were adopted during simulations. 
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 CHAPTER 3:  SURFACE PLASMON RESONANCE  

Chapter 3 presents the optimization and use of a customized SPR instrument to 

determine the equilibrium dissociation constant (Kd) for protein-protein molecular 

interactions. Some of the contents of this chapter has been adapted from the manuscript, 

which is being prepared for publication [1]. 

3.1: Introduction 

Several techniques such as SPR, fluorescence microscopy, and isothermal 

titration calorimetry (ITC) have been extensively used for the study of biomolecular 

interactions. Fluorescence microscopy requires the labeling of the molecule of interest. 

The chemically grafted foreign molecule may introduce artifacts in the experimental 

result. Isothermal titration calorimetry requires considerably higher sample concentration 

even to accomplish single experiment. On the contrary, SPR does not require labeling, 

and as compared to ITC it does not demand significantly higher sample concentration.  

 Surface plasmon resonance is a widely used label free biophysical technique to 

determine the equilibrium dissociation constant and the kinetics of bio-molecular 

interactions [2]. A SPR instrument has been optimized for the investigation of 

biomolecular interactions, including the determination of the Kd value. The 

immobilization of one of the interacting biomolecules onto the SPR sensor surface 

requires the successful chemical modification of the gold surface. Detail about the SPR 

instrument, including chemical modification and characterization strategies was 

presented in Section 2.1.  
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3.1.1: Principle of SPR   

As a result of the Coulomb interaction between the valence electrons, collective 

plasma oscillation (surface plasma oscillations) occurs on the metal surface [3]. The 

quanta of surface plasma oscillations are called surface plasmons [4]. Most of the 

incident light gets total internally reflected when it passes from higher to lower 

transparent refractive index medium, at an incident angle above the critical angle. A part 

of the incident light leaks to the lower refractive index medium as an electric field. This 

electric filed wave is called evanescent field wave and the magnitude of this wave 

reduces exponentially as the distance from the interface increases [5]. The p-polarized 

component of the evanescent wave penetrates the interface when the interface is coated 

with a thin metal layer of suitable thickness. At a particular angle of incidence, the p-

polarized light transfers its energy to surface plasmons increasing the intensity of electric 

field and causing drastic decrease in the intensity of the reflected light [5]. The 

phenomenon is known as the surface plasmon resonance and the corresponding angle of 

incidence is known as the SPR angle [6]. 

The propagation of constant (β) of the surface plasma wave along the metal 

surface is given by Equation 3.1[7,8]: 

                                                          βୱ୮ = kට கౣ୬౩మகౣା୬౩మ         (3.1) 

where,	k is the free space wave number,	ε୫  is the complex dielectric constant of the 

metal (gold), and	nୱ is the refractive index of dielectric medium. The parallel component 

of the wave vector  (βୣ୴	||) of the evanescent wave is given by Equation 3.2 [6]:      

           βୣ୴	|| = k	n୥	sinθ        (3.2) 
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where,	n୥ is the refractive index of higher  refractive index medium (glass prism) and	θ is 

the incident angle. At the condition of SPR, βୱ୮ equals to	βୣ୴	||. The SPR (θୗ୔ୖ) angle 

can now be calculated using Equation 3.3: 

    θୗ୔ୖ = sinିଵ ቆ ଵ	୬ౝ ට கౣ୬౩మகౣା୬౩మቇ                   (3.3) 

 In my case,	ε୫ (ε୫ = n୫ଶ , n୫ is the refractive index of the metal) and	n୥ both are 

fixed. Therefore any change in the SPR angle is due to the change in nୱ near the metal-

dielectric interface [6].  

3.1.2: Detection of biomolecular binding 

The instrument (Section 2.1) that was used in this dissertation research follows 

Kretschmann’s configuration [9] and the schematic of the configuration is shown in 

Figure 3.1a. Figure 3.1b shows a typical SPR curve. As explained in Section 2.1.1 and 

Equation 3.3, the SPR angle shifts (Figure 3.1b) are the result of the change in the 

refractive index near the sensor surface. Figure 3.1c represents the typical SPR 

sensorgram. The colored squares represent the corresponding position of SPR angles as 

shown in Figure 3.1b. The binding of biomolecules on the chemically modified sensor 

surface causes the change in the refractive index near the sensor surface thereby changing 

the SPR response (positions of brown and blue squares) relative to the SPR response for 

the buffer level (position of the red square). The initial stable buffer response as shown in 

Figure 3.1.c represents the SPR response prior to either ligand immobilization onto the 

sensor surface or to binding of analyte to the immobilized ligand. Based on the obtained 

sensorgrams (Figure 3.1c), further analysis can be performed.  
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The SPR instrument was optimized using various chemical surface modification 

techniques as explained in Section 2.1.2 in order to determine the affinity of the 

biomolecular interaction. The following sections in this chapter represent the 

determination of resolution of the SPR instrument, and the SPR results for the successful 

quantitative investigation of biomolecular interactions, taking human neuroglobin (hNgb) 

and cytochrome c from equine heart (Cyt c) and as a model proteins pair. 

 

 Figure 3.1: (a) Schematic of customized SPR setup. (b) Intensity of reflected light vs. incident angle plot 
(SPR curve). The SPR curves represent the SPR angle shift due to the change in refractive index on the 
sensor surface (Figures not to scale). (c) Typical SPR sensorgram. The colored squares represent the 
corresponding position of SPR dip as shown in Figure 3.1b. 
 
3.2: Determination of resolution 

Glycerol-water solutions at various glycerol percentages (v/v) mixed in DI water 

were prepared and degassed by sonication. The Lorenz-Lorenz relation (Equation 3.4) 

was used in order to determine the refractive index of glycerol-DI water mixtures [10]: 
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୬భమమ ିଵ୬భమమ ାଶ = φଵ ୬భమିଵ୬భమାଶ + φଶ ୬మమିଵ୬మమାଶ        (3.4) 

where,	nଵଶ is the refractive index of the mixture, nଵ is the refractive index of the glycerol, nଶ is the refractive index of the DI water, and φଵ and φଶ are the volume fractions. The 

volume fractions can be calculated using the relation:	φ୧ = x୧ϑ୧ ∑ x୧ϑ୧⁄ , where, x୧ is the 

mole fraction and	ϑ୧ is the molar volume of the ith component [10].    

  

 

 

 

 

 

 

Figure 3.2: Response vs. refractive index plot. The black solid circles are the equilibrium SPR responses 
and the red continuous line is a linear fit. The inset is the histogram plot of SPR data points for 10 minutes. 
The red line is the Gaussian fit and the standard deviation of the Gaussian fit was treated as the baseline 
noise. 
 

Using nଵ = 1.473  and 	nଶ = 1.331 , the values for 	nଵଶ  were determined to be 

1.33255, 1.33371, 1.33506, 1.33642, and 1.33778 for 1%, 2%, 3%, 4%, and 5% glycerol-

DI water solutions, respectively. The SPR response (at equilibrium) for each solution was 

then plotted vs. the refractive index of the solution as shown in Figure 3.2. The slope 

from the linear fit (continuous line) of the data (black solid circles) was used to determine 

the bulk refractive index sensitivity, which was 2782 ± 101 Pixel/RIU. The baseline 

noise was calculated by fitting the histogram (continuous line, inset of Figure 3.2) of SPR 

data points measured for 10 minutes when only DI water was passed through the sensor 
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surface. The baseline noise was determined to be (1.06 ± 0.04) 	× 10ିଵ  pixel. 

Therefore, the minimum refractive index resolution equals 
ଵଶ଻଼ଶ±ଵ଴ଵ RIU/pixel	× (1.06 ±0.04) 	× 10ିଵ  pixel, which is (3.81 ± 0.20) 	× 10ିହ  RIU. The resolution of SPR 

instrument is in used in the experiments is similar to the resolution of SPR instruments 

used by other research groups [11-13]. However, the resolution obtained for the SPR 

instrument used in the experiments is at least one order smaller compared to ~10ି଺ RIU 

resolution of most of the commercial SPR instruments. The discrepancy in the resolution 

is mainly due to the result of relatively higher baseline noise. There are possibilities of 

optimizing the baseline noise by performing the experiments in a vibration-free 

laboratory setup, using a detector with larger number of linear array photodiodes, and by 

using noise reduction algorithms (using noise filters).   

3.3: Cyt c-hNgb molecular interactions using customized SPR system 

 The Cyt c and hNgb pair was used as an interacting proteins pair to optimize the 

customized SPR instrument and to quantitatively investigate protein-protein interactions. 

The following subsections explain the SPR experimental details for the investigation of 

Cyt c-hNgb molecular interactions.  

3.3.1: Overview  

Neuroglobin (Ngb) is a hexa-coordinate heme protein that is predominantly 

expressed in the brain tissue [14]. In cultured neuronal cells, Ngb over-expression is up-

regulated under conditions of neuronal hypoxia and ischemia [15]. In transgenic animals, 

Ngb over-expression reduces ischemic cerebral injury, and its knockdown increases 

infarct volume and worsens post-ischemic conditions [16]. Decreased Ngb expression 
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was associated with an increased risk of Alzheimer’s dementia in humans [17]. The 

overall protein structure closely resembles to that of myoglobin (Mgb) with a 

characteristic three over three fold of α-helices [18]. As in other globins, Ngb reversibly 

binds small diatomic molecules, including O2. In spite of the high affinity for oxygen, the 

low micromolar intracellular Ngb concentration in the neuronal tissue does not support a 

role as oxygen storage and/or transport protein [19]. On the basis of a rapid reaction of 

oxygen bound Ngb with nitric oxide forming ferric Ngb and nitrate anion, it was 

suggested that Ngb functions as an NO scavenger [20].  

The unknown molecular mechanism of Ngb protective role stimulated a search 

for its interacting partners. Although in vivo and in vitro studies have identified several 

intracellular proteins as Ngb interacting partners, only few protein-protein complexes 

were characterized in terms of affinity constant and binding site identification. To better 

understand the molecular basis of interactions between Cyt c (an Ngb binding partner) 

and hNgb), the equilibrium dissociation constants (Kd) for the formation of Cyt c-Ngb 

complexes were determined using the customized SPR instrument.  

 Human Ngb (hNgb) and rat Ngb (rNgb) exhibit a high sequence homology 

(94%), though the rNgb structure lacks the disulfide bridge connecting Cys46 to Cys55 

[21] due to the presence of a glycine (Gly) residue at position 46. Therefore, rNgb was 

selected in order to understand the impact of the internal disulfide bond between Cys46 

and Cys55 and CD loop flexibility on the affinity between Cyt c and hNgb.  

3.3.2: Materials and reagents 

Ferric Cyt c, ferric hNgb and ferric rNgb were received from Dr. Miksovska’s lab 

(Chemistry and Biochemistry, FIU), 16-mercaptohexadecanoic acid (MHA), 11-
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mercapto-1-undecanol (MUO), Triethylene glycol mono-11-mercaptoundecyl ether 

(PEG-thiol), and nickel (II) sulfate hexahydrate, were purchased from Sigma-Aldrich; 

and ethanol (200 proof) from Decon Laboratories. N-hydroxysuccinimide (NHS), N-(3-

dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (EDC) were received from 

Thermo-Scientific and 2-{2-[2-(1-mercaptoundec-11-yloxy)-ethoxy]-ethoxy)-ethoxy 

nitrilotriacetic acid (NTA-thiol) from Prochimia Surfaces, Poland. All other reagents 

were purchased from Fisher Scientific and used as received. Solutions were prepared 

using deionized (DI) water (~18 MΩ, Ultra Purelab system, ELGA/Siemens). The 

polycrystalline gold chips (Section 2.1.1) were purchased from Platypus Technologies 

LLC. 

3.3.3: Sensor preparation 

 

 

 

 

 

 

 

 

 

Figure 3.3: Cartoon scheme of gold surface modification: (a) mixed alkanethiols (MHA and MUO) 
followed by Cyt c immobilization (Cyt c PDB entry 1AKK), and (b) mixed NTA- and PEG-thiols followed 
by His-tagged Ngb immobilization (hNgb PDB entry 1OJ6). Representative SPR sensorgram showing: (c) 
covalent immobilization of Cyt c to MHA-MUO surface via NHS-EDC coupling chemistry, and (d) 
immobilization of His-tagged Ngb to Ni2+ chelated NTA surface. 
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The SPR sensor was prepared using the gold chip. The gold surface modification 

and characterization using MHA-/MUN-thiol and NTA-/PEG-thiol are explained in 

Section 2.1.2. The schemes for the surface modifications are shown in Figure 3.3. The 

modified sensor chip was then mounted in the SPR system (Section 2.1). 

3.3.4: Protein Immobilization and Cyt c-Ngb binding 

 The immobilization of Cyt c to the MHA-MUO modified surface was achieved 

following NHS-EDC coupling chemistry via covalent linkage of Cyt c primary amines to 

the NHS-EDC activated -COOH surface (Figures 3.3a and 3.3c). The N-terminal His-

tagged hNgb was immobilized onto the Ni2+ chelated NTA surface (Figures 3.3b and 

3.3d). The immobilization of His-tagged proteins will be further explained in detail in 

Chapter 4. In order to detect the Cyt c-hNgb complex formation, buffered solutions of 

hNgb and Cyt c (different concentrations) were passed through the 20 µM Cyt c and 20 

µM hNgb immobilized sensor surfaces, respectively, at a flow rate of 50 µL/min. 

Phosphate buffer (PB, 10 mM, pH 7.0) was used in all the binding experiments. 

3.3.5: Data analysis 

The observed SPR response (quasi-equilibrium) for each Cyt c-hNgb complex 

formation was plotted as a function of Ngb or Cyt c concentration. Kd values were 

determined by fitting the response vs. concentration plot to Equation 3.5 [22,23]: 

                                                          Rୣ୯ = ୖౣ౗౮[୦୒୥ୠ	୭୰	େ୷୲	ୡ]୏ౚା[୦୒୥ୠ	୭୰	େ୷୲	ୡ]        (3.5) 

where, Rୣ୯  is the equilibrium response, [hNgb or Cyt c] is the Ngb or Cyt c 

concentration, and 	R୫ୟ୶	 is the fitting parameter corresponding to SPR response at 

maximum analyte (Cyt c or hNgb) concentration. 
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 3.3.6: Results and discussion 

In this part of my dissertation research, a customized SPR instrument was 

optimized via the characterization of the molecular mechanism of Cyt c-Ngb complex 

formation. The Kd values for Cyt c association to hNgb and rNgb were derived. The 

results from two different surface modification strategies were also investigated.  

Firstly, I examined bindings of hNgb and rNgb to covalently immobilized Cyt c 

onto an activated self-assembled monolayer (SAM) surface, via standard NHS-EDC 

coupling chemistry. Figure 3.4a represents the typical SPR sensorgrams for Cyt c-Ngb 

complex formation. A control experiment (Figure 3.4b, upper panel) was performed by 

flowing 30 µM buffered solution of Mgb over Au/SAM/Cyt c surface, under the similar 

condition as the results in Figure 3.4a. Mgb is a globular protein of a similar tertiary 

structure as Ngb but does not interact with Cyt c. Only a negligible increase in the SPR 

signal was detected for the Mgb association to Cyt c, more likely due to non-specific 

binding and/or bulk refractive index change. This result of not forming inter-protein 

complex between Cyt c and Mgb is consistent with the previous report suggesting no 

evidence of complex formation between these two proteins [24]. Since Cyt c has large 

number of amino acid residues with primary amines, the activated SAM surface more 

likely was fully covered with Cyt c. On the other hand hNgb has very small number of 

amino acid residues with primary amines. Therefore, an extra step of quenching NHS 

esters (after NHS/EDC activation of SAM) was not performed in the experiments as 

shown in Figure 3.4a. An experiment (Figure 3.4b, lower panel) with ethanolamine (0.2 

M, pH 8.0) treatment (for 5 minutes) of the Cyt c immobilized surface also gave no 

indication of different result. Cyt c-Ngb binding experiments did not reach perfect 
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equilibrium state (Figure 3.4a), which is in consistent with previously observed results 

[25]. Therefore, for simplicity, I used quasi-equilibrium SPR response (gray shaded area, 

Figure 3.4a) to determine the Kd value.  

 

 

 

 

 

 

 

 

 

 

Figure 3.4: (a) Representative SPR sensorgrams for hNgb binding to immobilized Cyt c. The grey shaded 
area represents the quasi-equilibrium SPR response. (b) Upper panel- control experiment showing 30 mM 
myoglobin (Mgb) does not bind to immobilized Cyt c but binding of 30 mM hNgb to the immobilized Cyt 
c as shown in Figure 3.3a. Lower panel- Cyt c-hNgb complex formation after Cyt c immobilized surface 
(Figure 3.3c) was treated with NHS/EDC followed by ethanolamine. (c) Plot of quasi-equilibrium response 
(Req) vs. hNgb (circles) concentration. The continuous lines are the fit to Equation 3.5. (d) EIS results: 
Nyquist plots for successive gold surface modification. Symbols correspond to experimental data and the 
continuous lines show CNLS fit using the equivalent circuit model Equivalent circuit (left inset). The right 
inset represents the Nyquist plot for bare gold demonstrating a linear dependence at frequencies below 3 
Hz. Symbols correspond to experimental data and the continuous line shows linear fit above 3 Hz. 
 

The Kd value determined from this procedure should be approximately similar to 

the true Kd value since the progression of SPR sensorgrams is negligible after 800 s. The 

quasi-equilibrium SPR response values (symbols, Figure 3.4c) were plotted as a function 

of hNgb concentration and fitted (continuous line, Figure 3.4c) to Equation 3.5, which 
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resulted in a Kd value of ~13 µM. A Kd value of ~ 45 µM was reported previously for 

DTT reduced ferric Ngb binding to ferric Cyt c using SPR in Tris buffer [26]. 

Figure 3.5: Representative SPR sensorgrams for Cyt c binding to the immobilized His-tagged Ngbs: (a) 
hNgb and (b) rNgb. The grey shaded area represents the quasi-equilibrium SPR response. (c) Plot of quasi-
equilibrium response (Req) vs. analyte (hNgb-green circles and rNgb-violet diamonds) concentration. The 
continuous lines are the fit to Equation 3.5. 
 

The formation of SAM, Cyt c immobilization to SAM, and Cyt c-hNgb complex 

formation surface were also verified by EIS measurements. A detailed explanation of EIS 

is given in Section 2.1.2.4, including data fitting and analysis. Results from EIS 

experiments are shown in Figure 3.4d. The semicircular diameter in the Nyquist plot 

(Figure 3.4 d) crudely determines the charge transfer resistance (Rct) [27]. The Rct value 

for bare gold (Semicircular part only, right inset of Figure 3.4d) is therefore ~2 kΩ. 

Except bare gold, other parameters were determined from fitting (Section 2.1.2.4) to 

equivalent circuit (left inset, Figure 3.4d). After SAM modification, the charge transfer 

resistance increased from 2 kΩ to 920 kΩ and from 920 kΩ to 1390 kΩ when Cyt c was 

immobilized onto an activated SAM. This confirms the successful SAM formation and 

Cyt c immobilization.  Moreover, the charge transfer resistance increases from 1390 kΩ 

to 2420 kΩ when 30 µM hNgb was allowed to bind with Cyt c, confirming the Cyt c-

hNgb complex formation. 
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Secondly, I followed the experiments with His-tag immobilization of Ngbs. This 

ensures homogeneous and predictable ligand orientation for His-tag immobilization [28]. 

Figure 3.3b represents the scheme for capturing of His-tagged Ngb onto Ni2+ chelated 

NTA surface. A detailed explanation of His-tagged protein immobilization will be given 

in Chapter 4. Figure 3.5a represents SPR sensorgrams for Cyt c binding to hNgb and 

Figure 3.5b for Cyt c binding to rNgb, at different Cyt c concentrations. 

The analysis of SPR data (fitting to Equation 3.5, Figure 3.5c) resulted in 

comparable equilibrium dissociation constants for hNgb association to Cyt c (Kd ~12 μM) 

and rNgb (Kd ~6 μM). The Kd value (~12 μM) for Cyt c-hNgb molecular interactions 

obtained from experimental results with His-tag immobilization is very close to the Kd 

value (~13 μM) from random covalent immobilization. This shows that either of the two 

methods can comparably determine the affinity of the Cyt c-Ngb complex formation. 

Similar Kd values for hNgb and rNgb association with Cyt c indicated that the formation 

of the Cyt c-Ngb complex is not significantly perturbed by the conformational flexibility 

of the CD loop, which is restricted in hNgb [29].  

3.4: Conclusions 

The SPR instrument was optimized and used for its use to investigate protein-

protein interactions (Cyt c-Ngb). The derived Kd value (~13 μM) was found in a general 

agreement with the previously published result. Based on the derived equilibrium 

dissociation constant (Kd), no significant impact of the internal disulfide bridge between 

Cys 46 and Cys 55 was found in the affinity of hNgb binding to Cyt c.  
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CHAPTER 4: A SURFACE PLASMON RESONANCE STUDY OF THEINTER- 

MOLECULAR INTERACTION BETWEEN Escherichia coli TOPOISOMERASE                          

AND pBAD/Thio SUPERCOILED PLASMID DNA 

In Chapter 3, I discussed the optimization of customized SPR instrument for the 

analysis of biomolecular (protein-protein) interaction, including determination of the 

equilibrium dissociation constant (Kd). This chapter presents the ability of the optimized 

customized SPR instrument for label-free characterization of the molecular interaction 

between Escherichia coli topoisomerase I (EctopoI) and pBAD/Thio supercoiled plasmid 

DNA. The majority of the content of this chapter has been adapted from my research 

work published in a peer reviewed paper [1]. 

4.1: Introduction 

The drug resistance of bacterial pathogens to available antibacterial drugs is a 

serious public health issue and needs to be addressed. The bacterial topoisomerase I, a 

DNA topoisomerase I (topoI), is a novel target biomolecule for the discovery of new 

antibacterial drugs [2,3]. DNA topoisomerases play important roles on both the 

supercoiling control of DNA and the resolution of topological barriers during replication, 

transcription, and recombination [4-6]. The supercoiling tension caused by translocation 

of RNA polymerase must be relieved by topoisomerase [7,8]. Topoisomerase I cleaves 

and rejoins a single DNA strand during topoI-DNA reactions [9], which establishes a 

transient covalent linkage between these two macromolecules. These complexes can be 

trapped using topoisomerase inhibitors [4,9]. 

Topoisomerase I can catalyze interconversion of various topological isomers [10] 

and type IA topoisomerase catalytic activity requires Mg2+[11]. In Escherichia coli, 
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EctopoI removes excess negative supercoils in order to regulate DNA supercoiling [12]. 

EctopoI is a single polypeptide of 865 amino acids and tyrosine 319 is the active site 

tyrosine in EctopoI that forms a transient covalent linkage to DNA 5’ phosphoryl group 

during EctopoI-DNA reaction [13]. I quantitatively studied the interactions for EctopoI-

pBAD/Thio supercoiled plasmid DNA (hereafter termed as pBAD/Thio) and Mg2+ bound 

EctopoI (Mg2+EctopoI)-pBAD/Thio using the surface plasmon resonance (SPR) 

technique.  

SPR is a widely used label free technique to determine equilibrium dissociation 

constants and the kinetics of bio-molecular interactions [14]. The sensor surface 

modification for the SPR assay was confirmed by using electrochemical impedance 

spectroscopy (EIS). The equilibrium dissociation constant (Kd) for EctopoI binding to 

pBAD/Thio was determined to be about 8 nM. A slightly higher Kd (~15 nM) value was 

obtained for Mg2+EctopoI-pBAD/Thio interactions. In addition, the dissociation rate 

constants (kd) for the interactions between the enzymes (EctopoI or Mg2+EctopI) and 

pBAD/Thio were also derived and a larger kd was obtained for Mg2+EctopoI-pBAD/Thio 

interactions. These results can help us further understand the important role of Mg2+ in 

the interactions between EctopoI and DNA substrate during catalysis [15].  

Mycobacterial tuberculosis topoisomerase I (MttopoI), has a different C-terminal 

DNA binding domain (CTD) that lacks the three Zn2+ binding motifs in the CTD of 

EctopoI [16]. Binding of the two enzymes, EctopoI and MttopoI, to pBAD/Thio plasmid 

DNA were compared. Under my experimental conditions, weak SPR signals were 

observed for interactions between MttopoI and pBAD/Thio. Therefore, the Kd value 

could not be recovered for MttopoI-pBAD/Thio interactions. 
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4.2: Materials and methods 

4.2.1: Materials 

Triethylene glycol mono-11-mercaptoundecyl ether (PEG-thiol), nickel (II) 

sulfate hexahydrate, sodium, chloride, potassium hexacyanoferrate (III) and ethanolamine 

HCL were purchased from Sigma-Aldrich, ethanol (200 proof) from Decon Laboratories 

LLC, 2-{2-[2-(1-mercaptoundec-11-yloxy)-ethoxy]-ethoxy)-ethoxy nitrilotriacetic acid 

(NTA-thiol) from Prochimia Surfaces, Poland and potassium ferrocyanide trihydrate 

from Acros Organics. N-hydroxysuccinimide (NHS), N-(3-dimethylaminopropyl)-N′-

ethylcarbodiimide hydrochloride (EDC) and GeneJET Plasmid Maxiprep Kit were 

received from Thermo-Scientific. N-terminal recombinant EctopoI and MttopoI, and 

pBAD/Thio were received from Dr. Yuk-Ching Tse-Dinh’s lab at FIU.  All other 

reagents were purchased from VWR international, USA. Solutions were prepared using 

deionized (DI) water (~18 MΩ, Ultra Purelab system, ELGA/Siemens or Milli-Q Direct 8 

water system). The polycrystalline gold chips (Section 2.1.1) were purchased from 

Platypus Technologies, LLC and each chip was cut into two halves before further 

processing.  

4.2.2: Methods 

4.2.2.1: Sensor preparation and characterization 

The cleaning of gold chip and formation of SAM with NTA- and PEG-thiols are 

explained in Section 2.1.2.3. The formation of SAM on the cleaned gold surface was 

confirmed by electrochemical impedance spectroscopy (EIS). A frequency range from 

10-1 Hz to 104 Hz was used during EIS measurements. A detailed explanation of EIS 

experiments can be found in Section 2.1.2.4. The surface modification was also 
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confirmed by contact angle measurements. The procedure for the contact angle 

measurements is explained in the Section 2.1.2.4. Figure 4.1a shows the scheme of SAM 

formation and His-tagged EctopoI or MttopoI immobilization.  

4.2.2.2: Enzyme immobilization and DNA binding 

The prepared sensor chip (Section 2.1.2.3) was mounted inside the SPR flow cell 

(Section 2.1.1). The sensor surface was activated using a 40 mM nickel (II) sulfate 

solution prepared in DI water for 2 minutes at a flow rate of 50 µL/min followed by DI 

water flushing for two minutes. The surface was then equilibrated with the HEPES buffer 

for 5-10 minutes. His-tagged EctopoI (2 µM) or MttopoI (2.5 µM) was immobilized on 

the activated SAM surface at a flow rate of 50 µL/min. Sequential treatment of the 

EctopoI or MttopoI immobilized surface was accomplished with a pulsed injection of 

NHS-EDC solution (25 mM NHS and 100 mM EDC) in DI water followed by 1 M 

ethanolamine (pH 8.2) in DI water. This treatment allowed me to achieve the baseline 

stability. The experiments with various pBAD/Thio concentrations were accomplished by 

regeneration of the sensor surface using 1M NaCl. For the experiments involving Mg2+, 

0.5 mM MgCl2 (in Tris buffer, pH 8.0) was passed over EctopoI immobilized surface for 

5 minutes. All the experiments were carried out at 22oC.  

4.2.2.3: Data analysis 

Complex non-linear least square (CNLS) fitting algorithm was used for EIS data 

using an equivalent circuit model (Figure 3.4d). Equilibrium data analysis methods were 

used to analyze the SPR data [17]. The equilibrium SPR response was plotted as the 

function of pBAD/Thio concentrations. In order to determine Kd, the plotted data was 

fitted to a simple nonlinear hyperbolic (SNLH) equation (Equation 4.1):  
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    R = ୖౣ౗౮[ୈ୒୅]୏ౚା[ୈ୒୅]             (4.1)                         

where, R is the equilibrium response, [DNA] is the analyte (pBAD/Thio) concentration, 

Kd is the equilibrium dissociation constant, and Rmax is the fitting parameter representing 

the response at very high pBAD/Thio concentration.  

The dissociation rate constants are obtained by fitting the SPR dissociation 

profiles using the exponential dissociation rate equation given below [18], 

                     R୲ = R୭eି୩ౚ	(୲ି୲౥)           (4.2) 

where, R୲ is response at any time t, R୭ is the response at t = t୭ (start of dissociation) and kୢ  is dissociation rate constant. R୭  and t୭  were fixed during the fitting. To avoid the 

artifact due to refractive index changes during the start of the dissociation process, entire 

SPR dissociation profiles were not fitted to Equation 4.2. Assuming t୭ = 0 s, at the start 

of dissociation, Equation 4.2 can be modified by taking the logarithm on both sides as, 

                            ln	ቀୖ౥ୖ౪ቁ = kୢt           (4.3) 

and therefore the plot of ln	ቀୖ౥ୖ౪ቁ vs. t should produce a straight line.  

4.3: Results  

4.3.1: Sensor surface characterization  

As shown in Figures 4.1b and 4.1c, the EIS experimental data (symbols) are fitted 

(continuous lines) using the equivalent circuit (inset, Figure 4.1c). The parameters 

obtained from fitting are listed in Table 4.1. The charge transfer resistance (Rct) for SAM 

modified gold is significantly higher (~1060 kΩ) compared to cleaned unmodified (bare) 

gold (~0.5 kΩ). This significant difference in Rct value clearly confirms the successful 

modification of the gold surface.  
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Figure 4.1: (a) Scheme showing the sensor surface modification with mixed thiols followed by the His-
tagged EctopoI or MttopoI immobilization. (b) Electrochemical Impedance Spectroscopy (EIS) for the 
cleaned bare gold. (c) EIS for SAM modified gold surface, inset: equivalent circuit for EIS data fitting and 
analysis. In both Figures b and c, the symbols are experimental data and continuous lines are the CNLS fit. 
Cell phone images of 5 µL water drop on (d) cleaned gold and (e) SAM modified gold.  
 
  Moreover, due to the presence of SAM on the gold surface, the interfacial 

capacitance (C) for modified surface is obviously reduced (313nF) compared to clean 

gold (1227 nF). The contact angle for the water drop on clean bare gold (Figure 4.1d) is 82௢ ± 6௢ and the contact angle for the water drop on SAM modified gold is	29௢ ± 2௢. 

The significant reduction in the contact angle also confirms the formation of SAM on 

gold surface. 

Surface C (nF) Rct (kΩ) Rs (kΩ) α 
Au 1227±122 0.48±0.08 0.95±0.04 0.75±0.01 
Au/SAM 313±3 1060±10 0.93±0.08 0.94 

 

Table 4.1: The parameters obtained by CNLS fitting of EIS experimental data to an equivalent circuit 
(Inset, Figure 4.1c). The errors are the standard errors of the fitting. 
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4.3.2: Enzyme immobilization and pBAD/Thio binding 

  

 

 

 

 

 

 

 

 

Figure 4.2: (a) SPR sensorgram for the immobilization of EctopoI. The arrows show the start of 
immobilization and buffer wash. Inset: Normalized response vs. time for a separate experiment showing the 
SPR response before and after NHS-EDC followed by ethanolamine treatment. (b) Representative SPR 
signals showing stability of sensor surface before and after immobilization of the enzymes. (c) 
Representative SPR profile for EctopoI-pBAD/Thio interaction: 1 to 2 association, 2 to 3 saturation, 3 to 4 
minor signal shift due to manual changing of valve, 4 to 5 dissociation, and 5 to 6 regeneration.  
 
  As explained in the Methods section, both EctopoI (Figure 4.2a) and MttopoI 

(data not shown) were immobilized onto the Ni2+ chelated NTA surface. The inset in the 

Figure 4.2a represents the SPR signal for a separate experiment showing the SPR signal 

drift before NHS-EDC followed by ethanolamine treatment. Following EctopoI (or 

MttopoI) immobilization, before the treatment the baseline signal strength decreases 

continuously. However, after the treatment, the baseline stability was achieved. Figure 

4.2b depicts the sensor surface stability after chemical treatment of the enzyme 

immobilized surfaces with NHS-EDC followed by ethanolamine treatment. Figure 4.2c is 

the representation of pBAD/Thio binding to the EctopoI enzyme immobilized sensor 
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surfaces, including association, saturation and dissociation of SPR signal. The sensor 

surface was regenerated using 1 M NaCl solution.  

4.3.3: pBAD/Thio molecular interaction with EctopoI, Mg2+EctopoI and MttopoI 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: SPR sensorgrams for (a) pBAD/Thio binding to EctopoI, (b) for pBAD/Thio binding to Mg2+ 
bound EctopoI and (c) for pBAD/Thio binding to MttopoI. (d) Plot of equilibrium SPR response vs. 
pBAD/Thio concentration. The symbols are average experimental data of three different measurements 
with error bars as standard deviation and the continuous lines are the simple hyperbolic fit (Equation 4.1). 
 

 The concentration-dependent pBAD/Thio binding to EctopoI and Mg2+EctopoI 

are shown in Figure 4.3a and 4.3b, respectively. Under my experimental conditions, the 

pBAD/Thio did not show a considerable response change upon its binding to MttopoI 

(Figure 4.3c). The SNLH fitting, using Equation 4.1, to the plot of equilibrium response 

vs. concentration of pBAD/Thio (Figure 4.3d) provides quantitative information of the 

interaction; more precisely, the Kd can be derived. The Kd value obtained from the fit was 

about 8 nM for EctopoI-pBAD/Thio interactions and a slightly higher Kd value (~15 nM) 
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for Mg2+EctopoI-pBAD/Thio interactions was obtained. I could not obtain quantitative 

information for MttopoI-pBAD/Thio interactions.  

4.3.4: Effect of Mg2+on EctopoI-pBAD/Thio molecular interaction 

To study the effect of Mg2+, the SPR dissociation signals were fitted using the 

exponential dissociation rate constant equation as explained in the Methods section. For 

the SPR traces shown in Figures 4.3a and 4.3b, the dissociation SPR signals were 

recorded for data fitting and analysis.  

 

 

 

 

 

 

 

 

 

Figure 4.4: Representative SPR dissociation profiles fitted to exponential dissociation rate equation 
(Equation 4.2). The symbols are experimental data and the continuous lines are the best fit to Equation 4.2. 

Inset: Plot of ln	ቀୖ౥ୖ౪ቁ vs. t in order to find the most linear data rage. The data in the range between 1 and 2 

were identified as the best data fitting range (most linear part). The symbols are experimental SPR 
responses converted to logarithmic data (Equation 4.3) and the continuous lines are the linear fit to 
Equation 4.3. 
 

The most linear data range, excluding the starting data, from this plot of ln	ቀୖ౥ୖ౪ቁ 

vs. t  (Figure 4.4, inset) was identified as the data range to fit to the unmodified (original) 

SPR dissociation signals using Equation 4.2. The kd values were derived by fitting the 
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data to Equation 4.2. Due to the very weak dissociation signal, 0.625 nM and 2.5 nM 

DNA data were not used for this fitting. Since EctopoI-pBAD/Thio binding experiments 

were finished at 20 nM DNA concentrations, kd values were derived by fitting 5 nM, 10 

nM and 20 nM data. As shown in Figure 4.4, stronger dissociation signals were observed 

for Mg2+EctopoI-pBAD/Thio interactions compared to EctopoI-pBAD/Thio-EctopoI 

interactions. The derived dissociation rate constant (kd) value for EctopoI-pBAD/Thio 

interactions was ~0.017 s-1 and for Mg2+EctopoI-pBAD/Thio interactions was ~0.043 s-1. 

Compared to EctopoI-pBAD/Thio interactions, a larger kd value for Mg2+EctopoI-

pBAD/Thio interactions suggests that the rate of enzyme turnover following DNA 

religation during catalysis of EctopoI- pBAD/Thio relaxation reaction is enhanced in the 

presence of Mg2+. 

4.4: Discussion 

Recognizing EctopoI as an important target biomolecule for the discovery of new 

antibacterial drugs [2], EctopoI-plasmid DNA interactions were quantitatively studied for 

the first time (to the best of my knowledge) using SPR, a surface based affinity 

technique. In the SPR technique, the sensor surface modification plays a crucial role for 

the minimization of non-specific binding and reproducibility of SPR signals. I carried out 

EIS and contact angle measurements to confirm the gold surface modification via the 

mixed thiols. The efficient charge (electron) transfer between the redox couple and the 

working electrode in solution is basically evaluated by charge transfer resistance (Rୡ୲) 

determination. The Rୡ୲ value obtained either from fitting or crudely from the semicircular 

diameter (Figures 4.1b and 4.1c) [19], for Au surface is much smaller compared to 

Au/SAM surface (Table 4.1). This clearly confirms the successful sensor surface 
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modification. My data also shows that the interfacial capacitance (C) decreases as the 

surface thickness increases because of the surface modification (Table 4.1). Moreover, 

the reduction of contact angle for 5 µL water drop from clean bare gold (Figure 4.1d) to 

SAM modified gold (Figure 4.1e) can also confirm the formation of SAM on the gold 

surface. The successful immobilization of EctopoI or MttopoI on the modified sensor 

surface was achieved via histidine tag (His-tag) capture method. Previously reported 

result shows that the single His-tag has a weak affinity (~1 µM) to the Ni2+-NTA surface 

[20]. Even immobilized hexahistidine tagged proteins would dissociate upon continuous 

buffer flushing (Figure 4.2a, inset), and this phenomenon is not suitable for protein-small 

molecule interaction studies [21]. The immobilized enzyme surface must therefore be 

stable. This could be achieved by chemical treatment of the enzyme immobilized surface 

with sequential flow of NHS-EDC and ethanolamine solutions (explained in Methods). 

According an application note [22], even though, the primary amines (side chain terminal 

groups) in the immobilized proteins are modified due to a treatment for similar purpose 

(baseline stability), but, the resulting binding sites after stabilization should be sufficient 

for kinetic characterization. 30 µL of each (NHS-EDC and ethanolamine) solution was 

injected as a pulse for 20 seconds. Figure 4.2a shows the EctopoI (and MttopoI, data not 

shown) immobilization onto the sensor surface. In my case I did not have –COOH groups 

together with –NTA groups on the sensor surface, however, the treatment with NHS-

EDC followed by ethanolamine allowed me to achieve the baseline stability as what was 

achieved in the previous report [21]. I, therefore, named this immobilization of His-

tagged EctopoI (or MttopoI), explained here, as capture covalent immobilization. The 

mechanism that maintained the baseline stability was not very clear to me. However, this 
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might be due to the activation of primary –COOH groups of amino acid residues forming 

NHS ester that covalently linked with primary amines of nearby immobilized enzymes, 

thus forming the stable layer. Alternatively, the pulsed injection (NHS-EDC and more 

precisely, the concentrated, 1 M, ethanolamine solution) quickly removed the loosely and 

non-specifically bound enzymes thereby maintaining baseline stability. The first 

speculation is less likely because the ratio of NTA-SAM and PEG-SAM was 1:9, which 

ensures that the immobilized protein molecules are not very near to couple to each other. 

As shown in Figure 4.2b, the SPR response was found to be stable for 10 minutes before 

and after the treatment of EctopoI and MttopoI immobilized surfaces and thus guarantees 

the sensor surface stability and the successful capture covalent immobilization of the 

enzymes.  

Figures 4.3a shows the interaction of EctopoI-pBAD/Thio in a concentration 

dependent manner. The EctopoI-pBAD/Thio binding responses saturated quickly; 

therefore an equilibrium analysis method could easily produce the Kd value via SNLH 

fitting (Figure 4.3d). The Kd value for EctopoI-pBAD/Thio interactions was found to be 

about 8 nM. A slightly higher Kd value (~15 nM) was obtained for Mg2+EctopoI-

pBAD/Thio interactions. For the experiments shown in Figures 4.3a and 4.3b, except for 

40 nM data, each SPR trace was repeated three times. Due to sample limitation, the 40 

nM data was not repeated. After saturated SPR responses were achieved, dissociation 

SPR profiles were recorded for some experiments. Buffer flushing could dissociate the 

EctopoI-pBAD/Thio complex considerably. The covalent topoisomerase-DNA complex 

is transient and reversible in nature [5]. Treatment of the topoisomerase-DNA complex 

with high salt would promote dissociation of the DNA from enzyme following relegation 
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[23]. After desired SPR signals were recorded, the surface was treated using 1M NaCl (in 

DI water) via pulsed injection for 2-3 minutes. This could successfully regenerate the 

surface to the initial (buffer) level and the surface was ready for next pBAD/Thio 

concentration. Figure 4.2c shows a typical SPR sensorgram showing association, 

saturation and dissociation of enzyme-pBAD/Thio interaction followed by regeneration. 

It should be noted that 10 mM Tris (pH 8.0) buffer was used as running buffer for 

enzymes-pBAD/Thio interaction experiments. The immobilized enzyme surfaces were 

equilibrated with the Tris buffer, for approximately 5 minutes, before pBAD/Thio 

injection. The experiments for each enzyme were performed either on the same chip or 

on different sensor chips. The variation of chip surfaces resulted in a variation of 

equilibrium response (lowest to highest) of ~0.6 pixels, on an average, in these 

experiments.  

 In order to understand the influence of the topoI C-terminal domain (CTD) 

sequence on the interactions between topoI and supercoiled plasmid DNA, we also 

studied the interaction between MttopoI and pBAD/Thio using SPR. There are 

tetracysteine Zn2+ binding motifs [24] that follow the N-terminal 67 kDa 

transesterification domain in EctopoI [25]. The three tetracysteine motifs are part of a 

DNA-binding domain at the C-terminus of EctopoI [26]. Unlike EctopoI [27], MttopoI 

lacks Zn2+ coordination and has evolved to have a different CTD sequence [16]. Under 

my experimental conditions, I could not see the concentration dependent interaction for 

MttopoI-pBAD/Thio interactions. As shown in Figure 4.3c, weak SPR signals were 

observed instead. This result suggests that the tetracysteine Zn2+ binding motifs are 

required for observing the interaction with plasmid DNA with the SPR protocol described 
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here. Mycobacterium smegmatis topoisomerase I (MstopoI) has a CTD similar to MttopoI 

that also does not coordinate Zn2+ [16]. Previous reports indicate that MstopoI CTD 

interacts with DNA during catalysis [28] and is responsible for sequence specific 

recognition of duplex DNA by MstopoI [29]. Because of its specific interaction with 

duplex DNA sequence, the Mycobacterium topoisomerase CTD may not be as efficient 

in promoting high affinity binding to the single-stranded DNA region in supercoiled 

plasmid DNA as the CTD in EctopoI. Alternatively, the result observed here might be 

due to the loss of MttopoI activity during protein immobilization. The dialyzed MttopoI 

sample used for protein immobilization was assayed for relaxation activity and found to 

be active (data not shown, this experiment was performed in Dr. Tse-Din’s lab at FIU).  

It has been revealed from the crystal structure of the 67 kDa N-terminal fragment 

of EctopoI that there is presence of acidic and basic amino acid residues nearby the active 

site region [30]. It has also been proposed that Lys-13 and Arg-321 (both basic residues) 

participate in DNA cleavage [31,32] and three acidic residues Asp-111, ASP-113, and 

Glu-115 coordinate with Mg2+ [33]. I could not detect the concentration dependent Mg2+ 

binding to EctopoI, which might be the limiting case of our SPR systems to resolve the 

detection of very small molecular weight ions/molecules-protein interactions. I also did 

not analyze our SPR sensorgrams for association rate constant measurements due to rapid 

association and fast saturation of the SPR signals. Therefore, to better understand the 

effect of Mg2+ coordination, the SPR dissociation profiles were recorded for the SPR 

sensorgrams shown in Figures 4.3a and 4.3b. These SPR profiles were fitted to the 

exponential dissociation rate constant equation. The fitting procedure is explained in 

detail in Methods. A larger dissociation rate constant (kd) (~0.043 s-1) was obtained for 
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Mg2+EctopoI-pBAD/Thio compared to EctopoI-pBAD/Thio interactions (~0.017 s-1). 

This increase in kd value confirms that EctopoI catalytic activity is enhanced with Mg2+. 

This is consistent with the role of Mg2+ to increase the dissociation rate constants for type 

IB topoisomerase I-DNA interactions, as reported previously [15]. Such analysis for type 

IA topoisomerase-DNA interactions has not been previously reported.  

4.5: Conclusions 

   The quantitative study of EctopoI-pBAD/Thio interaction has been accomplished 

for the first time (to the best of my knowledge), using a customized SPR. A slightly 

higher equilibrium dissociation constant (Kd) a larger dissociation rate constant (kd) for 

Mg2+EctopoI-pBAD/Thio interactions, compared to EctopoI-pBAD/Thio interactions 

suggest that enzyme turnover during plasmid DNA relaxation is enhanced due to the 

presence of Mg2+.  
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CHAPTER 5: ANALYZING SURFACE PLASMON RESONANCE DATA: 

CHOOSING A CORRECT BIPHASIC MODEL FOR INTERPRETATION 

In Chapters 3 and 4, I explained SPR as a label free experimental tool for the 

analysis of biomolecular interactions. This chapter presents my theoretical research 

results for the analysis of the biphasic SPR data. The determination of the association rate 

constant (kୟ) and dissociation rate constant (kୢ) requires the fitting of SPR sensorgrams. 

For the SPR data fitting using a single exponential function, the procedure to extract the 

rate constants is straightforward. However, there is no simple procedure for SPR data 

fitting with double exponential functions. The commonly existing procedure requires 

some prior knowledge of the underlying interaction mechanism and the extracted rate 

constants often have large uncertainties. In this chapter, a new method of analyzing the 

biphasic SPR data is presented using the three commonly employed biphasic models. 

This method is based on a general analytical solution of the biphasic rate equations, 

which is much more transparent and straightforward than the highly non-linear numerical 

integration approach. The procedures have been illustrated with examples of the data 

analysis on simulated SPR profiles, and the results are discussed. The contents of this 

chapter has been adapted from my research results published in a peer reviewed paper 

[1]. 

5.1: Introduction 

Surface plasmon resonance (SPR) is an affinity based label-free biophysical 

technique for the analysis of biomolecular interactions, including the determination of the 

kinetic parameters [2-9]. SPR has been successfully used to study protein-protein and 

protein-DNA interactions [10-14], peptide inhibitor studies [15], adsorption rate of 
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chemical molecules [16], and to investigate the binding of proteins to lipid membranes 

[17]. SPR has also been used as a fundamental tool to validate the quantitative data from 

other method [18]. The equilibrium SPR data analysis method has been used successfully 

to determine the equilibrium dissociation constant (Kୢ ) [11]. However, this simple 

method has some limitations [19]. Therefore, the kinetic analysis should be performed in 

order to obtain the association rate constant (kୟ) and dissociation rate constant (kୢ) [20]. 

   Several attempts have been reported in order to enhance the resolution of SPR 

systems [21-23]. However, there is no clear and straightforward procedure to choose and 

analyze the appropriate biphasic SPR data. A commonly used approach is to fit the SPR 

data directly with the numerical solutions of the rate equations, corresponding to a chosen 

biphasic model [24-29], and the procedure relies on the quality of fitting (ܴଶ value) to 

numerical solutions of the rate equations as well as on some prior knowledge of the 

system under study to determine the underlying biphasic binding mechanisms. In 

addition, this highly non-linear fitting procedure assumes that the two components 

(phases) of the biphasic reaction contribute equally to the SPR signal, which may not be 

true for real systems. The three commonly used biphasic binding models: two-step 

conformational change model (Model 1) [24,25], heterogeneous ligand model (Model 2) 

[26,27,30], and bivalent ligand model (Model 3) [28,29], have been explained in this 

Chapter. 

This chapter attempts to address these issues based on analytical solutions of 

linear rate equations, which include the three widely used biphasic models, mentioned 

above. Systems with non-linear rate equations and systems beyond biphasic reactions are 

not considered here. This approach avoids the ambiguity of the relative SPR signal 
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weight for each phase of the biphasic reactions, and gives a well-defined procedure to 

identify the specific biphasic models. Moreover, this approach leads to a straightforward 

procedure to extract the rate constants from the fitting of the SPR profiles. These 

procedures of SPR data fitting, model identification and extraction of the rate constants 

are illustrated by the analysis of simulated SPR profiles. 

5.2:  Theoretical methods 

5.2.1: Data analysis for the biphasic binding model 

The three different biphasic models, as explained in detail in Section 1.3, can be 

expressed in matrix form as: Xᇱ = A଴ + AଵଶX            (5.1) 

where, 	Xᇱ = ൬XଵᇱXଶᇱ ൰ , A଴ = ቀa଴b଴ቁ , Aଵଶ = ቀaଵ aଶbଵ bଶቁ , and X = ൬XଵXଶ൰ . 	Xଵ and Xଶ 

represent the two phases of the biphaisc reaction. The matrix elements, listed in Table 

5.1, are obtained by comparing Equations 1.6, 1.8 and 1.10 with Equation 5.2 as given 

below:  

ୢଡ଼భୢ୲ = Xଵᇱ = a଴ + aଵXଵ + aଶXଶ  

(5.2) ୢଡ଼మୢ୲ = Xଶᇱ = b଴ + bଵXଵ + bଶXଶ  
 

where, a଴, aଵ, aଶ, b଴, bଵ, and bଶ all are constants. 

               
Model a୭ aଵ aଶ b୭ bଵ bଶ 

1 kୟଵC[B୭] −(kୟଵC + kୢଵ + kଶ) −(kୟଵC − kିଶ) 0 kଶ −kିଶ 

2 kୟଵC[B୭] −(kୟଵC + kୢଵ) 0 kୟଶC[B୭ᇱ ] 0 −(kୟଶC + kୢଶ) 
3 2kୟଵC[B୭] −(kୟଵC + kୟଶC + kୢଵ) −(2kୟଵC − kୢଶ) 0 kୟଶC −kୢଶ 

 

Table 5.1: The matrix elements of matrices A୭ and  Aଵଶ. 
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As long as A଴  and Aଵଶ  are independent of time, Equation 5.1 can be solved 

analytically, in the following form: Xଵ = P୭ + Pଵeି஢భ୲ + Pଶeି஢మ୲ 
(5.3) 

  Xଶ = Q୭ + Qଵeି஢భ୲ + Qଶeି஢మ୲ 
 

where, P′s  and Q′s  depend on A଴  and Aଵଶ . With initial conditions of 		Xଵ = Xଶ = 0	at t = 0, P୭ equals −(Pଵ + Pଶ)	and Q୭	equals	−	(Qଵ + Qଶ). It is well known that for linear 

differential equations, the exponents (σଵ  and σଶ) only depend on the elements of the 

matrix Aଵଶ and in fact are the eigenvalues of matrix Aଵଶ: σଵ = −ଵଶ (aଵ + bଶ) + ଵଶඥ(aଵ − bଶ)ଶ + 4aଶbଵ  

(5.4) σଶ = − ଵଶ (aଵ + bଶ) − ଵଶඥ(aଵ − bଶ)ଶ + 4aଶbଵ  

 
The eigenvalues (σଵ and σଶ), separately, have complicated dependency on the elements 

of ܣଵଶ, but as roots of quadratic equations they satisfy simple relationships:  σଵ + σଶ = −(aଵ + bଶ) 
(5.5) σଵσଶ = aଵbଶ − aଶbଵ 

Similarly, the exponents γଵ  and γଶ  can be obtained from the SPR dissociation 

profiles. In fact, the γᇱs are the σᇱs at analyte concentration	C = 0. The sums and products 

of the matrix eigenvalues derived from these matrix elements are listed in Table 5.2. 

Model ߪଵ + ଵߛ ଶߪଵߪ ଶߪ +  ଶߛଵߛ ଶߛ
1 ݇௔ଵܥ + ݇ௗଵ + ݇ଶ + ݇ିଶ ݇௔ଵ(݇ଶ + ݇ିଶ)ܥ + ݇ௗଵ݇ିଶ ݇ௗଵ + ݇ଶ + ݇ିଶ ݇ௗଵ݇ିଶ 

2 (݇௔ଵ + ݇௔ଶ)ܥ + ݇ௗଵ + ݇ௗଶ ݇௔ଵ݇௔ଶܥଶ + (݇௔ଵ݇ௗଶ + ݇ௗଵ݇௔ଶ)ܥ + ݇ௗଵ݇ௗଶ ݇ௗଵ + ݇ௗଶ ݇ௗଵ݇ௗଶ 

3 (݇௔ଵ + ݇௔ଶ)ܥ + ݇ௗଵ + ݇ௗଶ 2݇௔ଵ݇௔ଶܥଶ + ݇௔ଵ݇ௗଶܥ + ݇ௗଵ݇ௗଶ ݇ௗଵ + ݇ௗଶ ݇ௗଵ݇ௗଶ 

 

Table 5.2: The products and sums of the eigenvalues of matrix A12 (Equation 5.5). The γᇱs are the σᇱs at 
analyte concentration	C = 0. 
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5.2.2: SPR data fitting using double exponential functions 

In the biphasic reaction, each phase of the reaction contributes to the SPR 

response. Therefore, the SPR response (R) is, in general, a linear combination of the two 

variables: 

                                                         R = αXଵ + βXଶ                   (5.6) 

where, Xଵ  is [AB∗], [AB] , [AଵB] , and Xଶ  is [AB] , [ABᇱ], [AଶB] for Model 1, Model 2, 

Model 3, respectively. As shown in Equation 5.3, Xଵ and Xଶ have the same exponents, σଵ 

and σଶ  (or γଵ  and γଶ  for dissociation). Hence, the SPR responseR , regardless of the 

values of α and	β, must still be a linear combination of two exponential functions. Partly 

due to complexity of Equation 5.4, the prevalent practice is to fit the SPR data directly to 

the numerical solutions of the rate equations. For this approach to work, it is necessary to 

assume 
஑ஒ = 1.	Notably, the ratio 	஑ஒ  only affects the coefficients of the exponential 

functions, but does not affect the exponents. Therefore, a more sensible way, that we 

proposed here, is to fit the SPR profiles to double exponential functions. 

       The association profiles were fitted using the following Equation: R = D + Eeି஢భ୲ + Feି஢మ୲        (5.7) 

where, D,  E,  and F  are all constants. With D = −	(E + F) , there are four fitting 

parameters. The SPR dissociation profiles are fitted using the following Equation with 

two additional parameters,	γଵ and	γଶ: 

         R = Eeିஓభ(୲ି୲౥) + Feିஓమ(୲ି୲౥)       (5.8) 

where t୭ is the time at the start of  the dissociation profiles, which was fixed during the 

fitting. From Equations 5.3, 5.6, and 5.7, one can easily see that if α to β ratio is known, 
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the ratio of	୉୊ = ಉಊ୔భା୕భಉಊ୔మା୕మ	, which is determined by analytical solutions. However, since in 

general α to β ratio is unknown, we let both E and F to be free fitting parameters. 

5.2.3: Identification of the underlying biphasic mechanism  

Based on Table 5.2, the dependencies of	σଵ and	σଶ as well as their sums and their 

products on the analyte concentration	C are summarized in Table 5.3, which is essential 

for the identification of the correct biphasic model. Table 5.3 clearly shows that in order 

to identify the underlying models, SPR experiments need to be carried out, at the 

minimum, for three different analyte concentrations. In reality, experiments for more 

values of analyte concentration may have to be carried out to truly reveal the quadratic or 

other non-linear behaviors of the exponents. In the example shown in Section 5.3.1 

below, five analyte concentration values were used in order to have a confident 

identification of the underlying model. 

Model σଵ + σଶ vs. C σଵσଶ vs. C σଵ and σଶ vs. C 
1 Linear Linear Non-linear 

2 Linear Quadratic Linear 

3 Linear Quadratic Non-linear 

 

Table 5.3: The dependency of the eigenvalues (σଵ and σଶ), and their sums and products (for association) 
on the analyte concentration (C).  
 
 As shown in Table 5.3, one should first examine the sum,	σଵ+σଶ	, which should be 

linear in C for all three models. This serves to verify that the underlying mechanism is 

indeed a linear biphasic reaction. Then, one should examine the product	σଵ	σଶ. If this is 

linear in C, then the choice is the two-step conformational change model (Model 1). If the 

product is quadratic in	C, then one needs to examine the plots of 	σଵ and	σଶ vs.	C. If the 
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plots are linear, then the choice is the heterogeneous ligand model (Model 2); otherwise 

the choice is the bivalent ligand model (Model 3). 

5.2.4: Determination of rate constants and their uncertainties 

      Once the appropriate model is determined and exponents are obtained from fitting 

procedures as described in Section 5.2.3 in order to determine the rate constants. Based 

on the exponents obtained from the fitting and the appropriate biphasic binding model, 

one can use the following procedures to extract the rate constants for the specific binding 

model.  

In case of Model 1, the slope of σଵ + σଶ vs. C plot gives kୟଵ, the slope of 
஢భ஢మ୩౗భ  vs. 

C gives the sum kଶ + kିଶ, γଵ + γଶ − (kଶ + kିଶ) gives kୢଵ, ஓభஓమ୩ౚభ  gives kିଶ, and finally, γଵ + γଶ − (kୢଵ + kିଶ)  provides kଶ . kୟ	 and 	kୢ  pairs of the rate constants are very 

straightforward with these calculations. The two equilibriam association constants can be 

calculated as K୅ଵ = ୩౗భ୩ౚభ  (intermediate stage) and K୅ଶ = ୩మ୩షమ  (final stage). The overall 

association constant is now calculated as K୅ = K୅ଵ(1 + K୅ଶ) [25]. Finally, the Kୢ value 

is the inverse of K୅ i.e. Kୢ = ଵ୏ఽ. 

       In case of Model 2, γଵ and γଶ produce the two dissociation rate constants  (kୢଵ 

and kୢଶ). Since there is no complicated dependancy of σଵ and σଶ on C for this particular 

biphasic model, the slopes of the linear fit of σଵ vs. C and σଶ vs. C directly give kୟଵ and kୟଶ , respectively. Comparing the intercepts from the fitting of σ	vs. C plot with the γ 

values, one can easily identify which kୢ is related to which kୟ. The Kୢ′s can now be 

calculated as Kୢଵ = ୩ౚభ୩౗భ and Kୢଶ = ୩ౚమ୩౗మ. 
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In case of Model 3, γଵ and γଶ produce the two dissociation rate constants  (kୢଵ 

and kୢଶ). The linear coefficient of the quadratic fit of σଵσଶ	vs. C plot provides kୟଵkୢଶ. 

Using γଶ = kୢଶ, kୟଵ can be calculated. The quadratic coefficient of the quadratic fit of σଵσଶ vs. C plot provides 2kୟଵkୟଶ. Finally, using the value of kୟଵ, kୟଶ is calculated. It is 

not clear whether the exponents γଵ and γଶ are kୢଵ and kୢଶ, respectively. The values of 

the dissociation rate constants may be switched. Therefore, kୢଵ  and kୢଶ  should be 

carefully identified. If 	kୟଵ + kୟଶ  (using both kୟଵ  and kୟଶ  determined above) gives a 

comparable value as the slope of σଵ + σଶ vs. C plot, obtained from the fitting, then the kୢଶ used above is correct. Otherwise, γଵ, instead of γଶ, should be used for kୢଶ and γଶ for kୢଵ. Finally, the Kୢ′s can be calculated as Kୢଵ = ୩ౚభ୩౗భ and Kୢଶ = ୩ౚమ୩౗మ. 

As discussed in Section 5.2.3, although the exponents	σଵ and	σଶ may have strong 

non-linear dependencies on the analyte concentration (C ), their sums and products 

(Equation 5.5) are at most quadratic in C (Table 5.3). This fact greatly simplifies the 

procedure for the determination of the rate constants. The uncertainties of the rate 

constants are mainly due to the two fitting procedures (Sections 5.2.2 and 5.2.3): one is 

the fitting of SPR profiles to double exponential functions, and the other is the fitting of 

the exponents (as well as their sums and products) to a linear or a quadratic function of 

the analyte concentration 	C . Because both fitting procedures are based on analytical 

solutions and are performed using exact functions, no systematic errors are introduced 

from the fitting procedures. The only source of uncertainty is the noise in the SPR 

profiles and variation in SPR experimental conditions, such as variation in qualities and 

sensitivities of the sensor chips. 
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Fitting of SPR profiles to double exponential functions is a non-linear one. 

Caution must be exercised in choosing the initial parameters. The quality of the fitting 

can be judged by the Rଶ  value as well as the standard error of the fitting. Typically, 

multiple SPR profiles (under the same experimental conditions, of course) are fitted, and 

average exponents and their standard deviations are obtained. The second fitting 

procedure (Section 5.2.4) is straightforward. The fitting parameters and their 

uncertainties can be obtained using standard error analysis techniques [31]. 

5.3: Results and discussion 

5.3.1: Analysis of simulated SPR profiles 

 

 

 

 

 

 

 

Figure 5.1:  Simulated SPR profiles for the two-step conformational change model (Model 1). The zig-zag 
lines represent the simulated SPR profiles and the continuous lines (red) are the fit to equation 5.7 
(association) and equation 5.8 (dissociation). 
 

The Mathematica software was used to simulate SPR sensorgrams, and the 

Originpro 9.1 to fit the simulated SPR profiles and to perform error analysis. We 

generated the SPR sensorgrams by directly substituting the rate constants into the 

analytical solutions (with B୭ = 250 RU) and adding a random noise with a standard 

deviation of 1 RU to simulate the experimental noises. Five SPR association profiles with 
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random noise were generated for each analyte concentration. The analyte concentration 

was set to zero during the simulation of the dissociation profiles. The dissociation profiles 

were simulated five times in total. The SPR association profiles, for the two-step 

conformational change model (Model 1), were simulated at five different analyte 

concentrations (C = 12.5  to 100  nM), using α = 0.8  and β = 1.2 . 	The rate constants 

were chosen to be the same as in a previous report (kୟଵ = 1 × 10ହ M-1s-1,  kୢଵ = 5 ×10ିଷ s-1, kଶ = 3 × 10ିଷ s-1, and kିଶ = 2 × 10ିଷ s-1) [32]. The simulated SPR profiles, 

together with the fitted lines of double exponential functions, are shown in Figure 5.1.  

      As shown in Figure 5.1, simulated SPR profiles were fitted well with double 

exponential functions. This is to be expected, as explained in Section 5.2. The fitted 

values of the exponents as well as their standard deviations are listed in Table 5.4.  C σଵ	(×10-3 s-1) σଶ (×10-3 s-1) γଵ (×10-3 s-1) γଶ	(×10-4 s-1) 
Fitted Analytical Fitted Analytical Fitted Analytical Fitted Analytical 

12.5 9.44±0.95 9.55 1.69±0.05 1.70  

8.76±0.24 

 

8.87 

 

11.25±0.03 

 

11.27 
25 10.05±0.38 10.03 2.16±0.03 2.18 

50 12.09±0.23 12.11 2.89±0.02 2.89 

75 14.12±0.19 14.14 3.35±0.02 3.36 

100 16.25±0.12 16.33 3.66±0.02 3.68 

 

Table 5.4: Fitted exponents,	σଵ, σଶ and	γଵ, γଶ for Model 1 (Figure 5.1) using two exponential functions.  

Next, the concentration dependencies of the exponents  (σଵ  and σଶ), and their 

sums and products was investigated. As can be seen from Figure 5.2, the sum (	σଵ + σଶ) 

and the product (	σଵσଶ) are linear in	C (Figures 5.3(a) and 5.3(b)),		σଶ (Figure 5.2(d)) is 

obviously non-linear in C  while the non-linearility of 	σଵ  is weak (Figure 5.2(c)). 

According to Table 5.3, the nonlinearity of	σଶ is enough to justify the choice of Model 1. 

Table 5.3 only gives theoretical behavior of the exponents	σଵ and σଶ (and their sums and 

products) for different models. In reality, of course, any non-linear function may appear 
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to be linear within a small range of the independent variable. A quadratic function may 

have a very small quadratic coefficient, and some non-linear function can have 

asymptotic linear behaviors. All these can present difficulties in using Table 5.3 to 

identify the correct biphasic models. 

 

 

 

 

 

 

 

 

 

Figure 5.2: The plots of (a) the sum σଵ + σଶ, (b) the product σଵσଶ vs. C, (c) σଵ, and (d) σଶ vs. the analyte 
concentration C. The symbols are the average with error bars as the standard deviation and the continuous 
line represents a linear fit.  
 

In cases where the model cannot be uniquely determined (for example, both the 

plots σଵσଶ vs.	C, and σଵ and	σଶ vs.	C are weakly non-linear), one needs to change SPR 

experimental conditions and repeat the experiments, either change the range of analyte 

concentrations, or record SPR profiles for appropriate time duration, or do both. Actually, 

these difficulties are the benefit of the analytical solutions. Because our method identifies 

the behavior of the exponents of various models, it can help experimentalists to design 

SPR experiments under appropriate experimental conditions to reveal the true behavior of 

the exponents. 
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Another possibility is when the two phases of the biphasic reaction proceed with 

fairly different time scale. As a result, σଵ and σଶ may have different asymptotic behavior 

and they may not show non-linear behavior within the same range of the analyte 

concentrations. This is indeed the case for our example reported here as shown in Figure 

5.2, where	σଵ is very weakly non-linear. However,	σଶ is clearly non-linear and this is 

enough evidence to identify the correct model (Model 1). According to Table 5.3, this 

nonlinearity of	σଶ is enough to justify the choice of Model 1. Also shown in Figure 5.2, 

the uncertainty of σଵ is somewhat bigger for the lowest analyte concentration (12.5 nM). 

This is because we have set the same absolute noise level for simulated SPR sensorgrams 

at every concentration.  

After having decided the appropriate model, we followed the procedures as 

outlined in the Section 5.2.4 to determine the rate constants. The results are listed in 

Table 5.5. The obtained rate constants are in good agreement with the corresponding 

input rate constants (Table 5.5). As can be seen from Figure 5.2, the linear fit in Figure 

5.2(a) and Figure 5.2(b) is very good (relative standard error of fitting ≤ 1%). Hence the 

uncertainties in the rate constants are mainly due to the standard deviations of the 

exponents (Table 5.4).  

Parameters kୟଵ	(×105 M-1s-1) kୢଵ (×10-3 s-1) kଶ (×10-3 s-1) kିଶ	(×10-3 s-1) 
Input 1.00 5.00 3.00 2.00 

Output 1.00±0.01 4.88±0.25 2.99±0.37 2.02±0.12 

 

Table 5.5: The input and output values for the parameters kୟଵ,	kୢଵ, kଶ and kିଶ for Model 1.  

The uncertainties of the rate constants in Table 5.5 are evaluated using standard 

error analysis techniques. The uncertainties are in good agreement with a previous study 

based on numerical integration approach [32], considering that our random noise of 1.0 
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RU was about twice as large, and a much smaller number of  SPR profiles (five) were 

simulated for each analyte concentration. We believe that using a smaller number of SPR 

profiles for each analyte concentration is more realistic and feasible for actual SPR 

experiments. 

5.3.2: Effect of 
஑ஒ = 1 assumption on the exponents 

 

 

 

 

 

 

 

 

 

Figure 5.3: Simulated SPR data for the two-step conformational change model at a random noise level of 1 
RU. The analyte concentration was 100 nM and this value was set to zero in order to simulate the 
dissociation profiles.  
 

Although the prevailing practice assumes 
஑ஒ = 1 (Equation 5.6), this may not be 

true in real systems. Figure 5.3 shows the simulated SPR sensorgrams for the two-step 

conformational change model (Model 1), for analyte concentration of 100 nM, and with 

the same kinetic parameters as used in the Section 5.3.1. The SPR profiles, association 

and dissociation, are quite different between the choices of α = β = 1, and α = 0.8 and β = 1.2.  
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Figure 5.4: (a) Simulated SPR dissociation profiles (from Figure 5.1) assuming α = β = 1 (Profile 1), and α = 0.8 and β = 1.2 (Profile 2), and (b) SPR dissociation profile (Profile 2) fitted with the two exponential 
functions while enforcing 

஑ஒ = 1. The zig-zag lines represent the simulated SPR dissociation profiles and 

the continuous lines (red lines) are the fit. 
  

In order to investigate further the effect of the 
஑ஒ = 1 assumption, we fitted the 

SPR dissociation profiles from Figure 5.3. The results are shown in Figure 5.4. In Figure 

5.4(a), two SPR dissociation profiles (zig-zag lines) for 
஑ஒ = 1 (Profile 1), and 

஑ஒ = ଶଷ 
(Profile 2), were fitted (continuous lines) with two exponential functions. In Figure 

5.4(b), Profile 2 (
஑ஒ = ଶଷ) was fitted again with two exponential functions while enforcing 

஑ஒ = 1; i.e., we kept the ratio of the parameters E and F (Equation 5.8) to be the same as 

what was obtained from the fitting of Profile 1 (Figure 5.4(a)). The corresponding fitted 

exponents are listed in Table 5.6. The errors in Table 5.6 are the standard error of fitting. 

Figure γଵ (s-1) γଶ (s-1) Rଶ 
4a, Profile 1 (8.73±0.12)×10-3 (11.26±0.01)×10-4 0.9996 
4a, Profile 2 (9.02±0.25)×10-3 (11.26±0.01)×10-4 0.9996 
4b, Profile 2 (2.81±0.03)×10-3 (10.70±0.01)×10-4 0.9995 
Analytical  8.87×10-3 11.27×10-4 - 

 

Table 5.6: Fitted parameters for the SPR dissociation profiles as shown in Figure 5.4 using two exponential 
functions. The analytical calculations of the parameters are also given for comparison.  
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The fitting of Profile 2 in Figure 5.4(b) was very good with Rଶ value of 0.9995, 

similar to the fitting qualities in Figure 5.4(a). However, the exponent γଵ is nearly three 

times the analytical value (Table 5.6). In other words, the Rଶ value gave no indication of 

the serious error in the assumption of 
஑ஒ = 1, as opposed to the real value of 

஑ஒ = ଶଷ. Our 

method, on the other hand, recovered the correct exponents for both profiles (Table 5.6). 

Notably, the assumption of 
஑ஒ = 1 introduces a systematic error. The data fittings using 

simulated SPR profiles with relatively smaller noises were unable to recover the correct 

values of the exponents.  

5.3.3: Reliability of model identification based on the new approach 

 

 

 

 

 

 

 

Figure 5.5: Simulated SPR association profiles (zig-zag lines) fitted to with Equation 5.7 (association) and 
Equation 5.8 (dissociation) with fixed exponents (continuous lines): (a) the exponents were calculated 
using the rate constants for Model 1, and (b) the exponents were calculated using the rate constants for 
Model 2. 
 

As shown in Section 5.2, every linear biphasic model results in double 

exponential SPR profiles. Therefore, a given SPR profile can be fitted equally well to 

different biphasic models. In order to demonstrate this, we used the simulated SPR 

profiles (from Figure 5.1) and fitted to Equation 5.7 (association) and Equation 5.8 
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(dissociation) using different biphasic models and different rate constants. The results in 

Figure 5.5 indicate that a given SPR profile can be fitted equally well to different 

biphasic models.  

In Figure 5.5(a), the SPR profiles are compared to the “correct” model (Model 1) 

using the rate constants listed in Table 5.5. As expected, the agreement is very good 

with	Rଶ~0.9991. In Figure 5.5(b), the same SPR profiles are compared to a purposefully 

picked “wrong” model (Model 2). Surprisingly, a similarly good fitting to SPR profiles 

was achieved (Rଶ~0.9986). The rate constants for the “wrong” model were obtained 

using procedures outlined in Section 5.2.4. The rate constants for the “wrong” model 

are: 	kୟଵ = (0.83 ± 0.01) × 10ହ  M-1s-1, kୢଵ = (8.76 ± 0.24) × 10ିଷ  s-1, kୟଶ = (1.95 ±0.28) × 10ସ  s-1, and kୢଶ = (11.25 ± 0.03) × 10ିସ  s-1. The relative uncertainty of 	kୟଵ	for the “wrong” model is somewhat bigger than that of the “correct” model (Table 

5.5). This is because the “wrong” model has introduced systematic error in the fitting. In 

particular, σଵ and σଶ are non-linear, but the “wrong” model requires them to be linear 

(Table 5.3).   

Therefore, in order to identify the underlying biphasic reaction, one must 

investigate the behavior of the exponents as a function of the analyte concentration	C 

(Table 5.3). Neither the slightly bigger uncertainty of the rate constants nor the minimal 

decrease of Rଶ  value enables one to confidently reject the “wrong” model. We fully 

expect that for SPR profiles of a high quality (such as relatively smaller noises, wide 

range as well as large numbers of the analyte concentration values, etc.), Rଶ value for the 

“wrong” model could be significantly worse than that of the “correct” model. 

Additionally, prior knowledge and experience with the system under study can help to 
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identify the “correct” model and reject the “wrong” one. Even in such cases, the approach 

explained here can still be of great value in confirming the model identification using the 

existing approach. 

5.4: Conclusions  

I have presented a new approach for the analysis of SPR profiles. The method is 

based on analytical solutions of the linear biphasic rate equations, which is fundamentally 

different from the existing data fitting approach based on numerical solutions. This not 

only provided a firm theoretical foundation for our fitting procedures, but also lended 

theoretical support for some of the common practices in SPR measurements, such as 

performing SPR experiments at several different analyte concentrations, or fitting SPR 

profiles using double exponential functions. 

In summary, the new SPR data analysis procedure, as explained in this report, has 

the following advantages: 1) avoids the ambiguity about which component (phase) of the 

biphasic mechanism is more sensitive to SPR, 2) obtains clear signature to determine the 

underlying biphasic reaction models, 3) does not require prior knowledge of a particular 

reaction model to determine the rate constants, and 4) uncertainty on the parameters can 

be transparently and directly assessed. 
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CHAPTER 6: QUANTITATIVE STUDY OF PROTEIN-PROTEIN 

INTERACTION by QUARTZ NANOPIPETTES 

In addition to SPR as discussed in Chapters 3, 4, and 5, this chapter presents a 

new label free nanopore based analytical method to quantitatively study protein-protein 

interaction. Unlike SPR, this method utilizes chemically modified nanopipettes (conical 

nanopores) with attoliter sensing volumes, to detect protein-protein interaction in a nano-

confinement environment. With the proper modification of negatively charged human 

neuroglobin (hNgb) onto the inner surface of nanopipettes, I was able to detect 

concentration dependent current change when the hNgb modified nanopipette tip was 

exposed to positively charged cytochrome c (Cyt c) with a series of concentrations in the 

bath solution. The equilibrium dissociation constant (Kd) for the Cyt c-hNgb complex 

formations was derived and the value matched very well with the result from surface 

plasmon resonance (SPR) measurement. These results demonstrate that nanopipettes can 

potentially be used as a label-free analytical method to quantitatively characterize 

protein-protein interactions. The entire content in this chapter has been adapted from my 

research results published in a peer reviewed paper [1]. 

6.1: Introduction 

Artificial nanopores, either biological or solid state, have become a new class of 

label-free electronic sensor since the pioneering work was reported in 1996 [2]. The 

current nanopore research focuses primarily on nucleic acids analysis, motivated by the 

promising progress in nanopore based single molecule DNA sequencing technique [3,4]. 

With the rapid progress of nanopore based technology, various types of nanopore devices 

have also been utilized to study other analytes, such as proteins [5-10], various 
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nanoparticles [11-13], and virus or virus-like particles [14]. In recent years, nanopore 

devices have been increasingly investigated for single protein detection and analysis. The 

size, charge, shape [9], unfolding [15], binding [16], surface adsorption [17], and 

aggregation [18] of proteins or protein complexes have been investigated at the single 

molecule level using nanopore devices. Metal ion-protein [19] and nucleic acid-protein 

[20] interactions have been quantitatively studied near the physiological conditions. Most 

recently, nanopore devices also show promising potential to be used to study kinetic 

protein-protein interactions quantitatively [21].  

Protein-protein interactions play critical roles in the cellular processes. 

Quantitative study of protein-protein interactions is important for the fundamental 

understanding of their roles in cellular functions and for applications in disease 

diagnostics, ligand screening, and biomarker discovery. Therefore, it is necessary to carry 

out further investigations to apply nanopore devices on this important topic. Quartz or 

glass nanopipette made from micro-capillary tubes [22] can be viewed as a conical- 

shaped solid state nanopore. Nanopipettes with 10s of nanometer in inner diameter can be 

easily, cheaply and reproducibly fabricated, which is the most attractive feature of 

nanopipettes. Nanopipettes can detect and analyze analytes using two methods. The first 

one is the widely used resistive-pulse sensing method (or the Coulter counting method) 

for nanopore devices. The molecules pass through a nanopore, partially block the ionic 

pathways, and thereby cause detectable and stochastic changes in ionic current. Using 

this method, DNA [23-26] and proteins [7] have been detected and analyzed at the single 

molecule level. The second method is based on surface charge sensing. Due to its conical 

shape, the ionic current through the nanopipette is very sensitive to surface charge 
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variation near the nanopipette tip. The specific binding of a small number (tens or 

hundreds) of charged analytes to chemically modified pipette surface near the pore mouth 

often induces measurable change in the ionic current. In addition, the rectification ratio of 

the strongly rectified ionic current-voltage (I-V) curve is another useful signal that can be 

utilized [19,27]. Using this method, the bindings between metal ions and prion proteins 

[19,28,29] have been studied.  

Herein, the idea of using nanopipettes was explored to quantitatively study 

protein-protein interactions, based on surface charge sensing. I used the cytochrome c 

(Cyt c) and human neuroglobin (hNgb) binding pair as the model system. These proteins 

and their intermolecular interactions are very important for a variety of biological 

activities, including preventive action during hypoxic conditions and apoptosis [30,31]. 

The receptor His-tagged hNgb proteins were immobilized onto the quartz nanopipette 

inner surface through anti-His antibodies. The negatively charged hNgb can specifically 

capture positively charged Cyt c in bath solution at neutral pH and induce measurable 

ionic current change through the nanopipette. The binding pairs can also be separated by 

treating them with 1 M NaCl solution, and the baseline ionic current can be recovered. 

By monitoring and analyzing the normalized ionic current change as a function of Cyt c 

concentration in the bath solution, an equilibrium dissociation constant (Kd) value of 

20±4 µM was obtained and was in good agreement with surface plasmon resonance 

(SPR) measurement, a well-established surface-based affinity senor. In the control 

experiments, the normalized ionic current change through the hNgb-modified nanopipette 

was monitored when the same concentration of positively charged Lysozyme (Lsz) 

proteins were added in the bath solution. Smaller current changes, with weak analyte 
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concentration dependence, were observed. This is consistent with the fact that the 

interaction between Lsz and hNgb is non-specific and weak. Analytical calculations and 

Poisson-Nernst-Planck (PNP) numerical simulations (numerical simulations are 

explained in Chapter 7) were carried out to understand the mechanism of the surface 

charge sensing method of nanopipettes for affinity analysis. My results suggest that 

glass/quartz nanopipettes have the potential to quantitatively study various protein-

protein interactions. The protein immobilization method is general and can be applied to 

other His-tagged proteins. In these experiments, the effective sensing volume of 

nanopipette is several attoliters and the involved protein molecule number can be as few 

as 10s. Therefore, nanopipettes can also mimic the protein-protein interactions in a 

concentrated and crowded intracellular environment. 

6.2: Methods 

6.2.1: Reagents and solutions 

(3-Aminopropyl) triethoxysilane (APTES) was purchased from Thermo Scientific 

(Rockford, IL); mouse anti-His antibody was purchased from Invitrogen (Camarillo, 

CA); Glutaraldehyde was purchased from SPI-CHEM (West Chester, PA), and 2-

Aminoethanethiol hydrochloride from Acros Organics (Thermo Fisher Scientific, New 

Jersey, USA). Lysozyme from chicken egg white was purchased from Sigma Aldrich (St. 

Louis, MO). Ferric cytochrome c from equine heart (Cyt c) and ferric His-tagged human 

Ngb (hNgb) were received from Dr. Miksovska’s lab at FIU. All other chemicals were 

purchased from Sigma Aldrich and used without further purification. All solutions were 

prepared using deionized (DI) water (~18MΩ) from a water purification system (Ultra 

Purelab system, ELGA/Siemens). If not mentioned otherwise, I always used buffered 
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KCl solution (25 mM KCl and 2.5 mM PB) at pH = 7.0 for ionic current measurements. 

The prepared electrolyte solution was filtered through a 0.2 µm filter and degassed by 

sonication. The conductivity of such an electrolyte solution was 0.367 Sm-1 at 23 oC, 

which was determined by a conductivity meter (Oakton, CON 510). 

6.2.2: Quartz nanopipette fabrication and characterization 

The fabrication and characterization of nanopipettes are explained in Section 2.2. 

The SEM result reveals that the inner diameter of nanopipettes is about 37 nm (Figure 

2.2b). Although the inner diameter can be determined by SEM, it is not practical to check 

the inner diameter of every nanopipette by SEM. I, therefore, obtained the inner diameter 

of the nanopipettes based on the pore ionic conductance Gp using Equation 2.3. The 

estimated the average half cone angle of the outer surface is 1.9o. Therefore, the 

estimation for the half cone angle, θ=1.6o, is reasonable.  

 

 

Figure 6.1: (a) The measured I-V curves for 24 non-modified nanopipettes in 25mM KCl. The mean I-V is 
showed as the solid line, and the standard deviation is displayed by the grey area. Inset: An experimental I-
V (open blue circles) curve with a linear fit (solid line) in the voltage range from -15 mV to +15 mV. (b) 
The pore conductance (Gp) histogram of 24 non-modified nanopipettes. The solid line is a Gaussian fit and 
the mean value of Gp is 0.54 nS. The conductance was determined from the slope of the I-V curve in the 
inset of (a). (c) The rectification ratio r (at ±0.4V) histogram of 24 non-modified nanopipettes and the mean 
value is -0.91. 
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In the bigger bias range, as shown in Figure 6.1a, the I-V curves are nonlinear. 

However, referring to the inset of Figure 6.1a, the I-V curves for the bare nanopipettes 

are always nearly linear and symmetric within the voltage range from -15 mV to +15 mV. 

The symmetry and linearity of the I-V curves suggested that the surface charge effect can 

be ignored. A Gp histogram for 24 nanopipettes is displayed in Figure 6.1b, and a 

nanopipette conductance of 0.54 ± 0.15 nS is obtained. Due to the conical shape 

geometry and large surface charge density, the measured I-V curves of nanopipette 

always show rectification behavior in the bigger bias range. To quantitatively compare 

the rectification, I used the definition of rectification ratio r as r = log ቚ୍శ୍షቚ [19]. The 

rectification ratio r is zero when the I-V is symmetric. A histogram of the rectification 

ratio of 24 nanopipettes at ±0.4V is shown in Figure 8.1c and r = -0.91±0.45. 

6.2.3: Surface functionalization 

 The quartz nanopipette surface was chemically modified according to the 

procedures as explained in Section 2.2. I have modified 74 nanopipettes; the successful 

rate of the first APTES modification step was about 35% (26 out of 74). The failure ones 

showed unstable, weak or negative rectification ratio of I-V curves. I expect this 

modification step to be more successful if the environmental humidity can be lowered 

(lab room humidity was 52-56% at 23oC). If the first ATPES modification step is 

successful, the successful rate of the following modification steps is about 73% (19 out of 

26). I discarded the nanopipettes that did not show the corresponding changes of 

rectification in I-V curves. Out of the 19 hNgb-modified pipettes, 6 pipettes did not show 

reliable responses in Cyt c or Lsz measurements. 
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6.3: Results and discussion 

6.3.1: Quartz nanopipette characterization 

The details of quartz nanopipette fabrication are given in Section 2.2.3 and in the 

Methods section. The surface charge can be ignored at this small voltage range (inset of 

Figure 6.1a, simulation results in Chapter 7) and a simple analytical equation (Equation 

2.3) can be used to derive the inner diameter. When using an average half-cone angle θ = 

1.6o and Gp=0.54 ± 0.15 nS, the derived inner diameter is 34 ± 11 nm and is very close to 

the SEM result. Therefore, an average inner diameter of 34 nm and an average half-cone 

angle of 1.6o were used in the simulations (Chapter 7). The value of θ is consistent with 

the SEM observation. A similar half-cone angle has also been reported by another group 

[32].  

 The rectification phenomenon has been thoroughly studied experimentally and 

theoretically and is attributed to the surface charge and conical shaped nanopore 

geometry [33-35]. Assuming a uniform distribution of surface charge density at the 

quartz surface, the surface charge density can be estimated using numerical simulations 

by comparing with the measured rectification ratio at ±0.4V. The surface charge density 

of quartz nanopipettes were determined by matching experimental and simulated 

(Chapter 7) I-V The determined surface charge density of -46 mCm-2 is in the range of 

reported surface charge densities of quartz and silica surface [36]. 

6.3.2: Human Neuroglobin immobilization and characterization 

Human Ngb is a hexa-coordinated heme protein predominantly expressed in nerve 

tissues [37]. This protein has a molecular weight of 17 kDa [30] with a hydrodynamic 

diameter of 3.8 nm [38], and its isoelectric point (pI) is 5.4 [39], suggesting that hNgb is 
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a negatively charged protein at neutral pH. The total charge of hNgb was determined to 

be -4e using ProtParam [40]. It is critical to immobilize hNgb properly to preserve 

protein function and achieve adequate surface coverage. The procedures of anti-His 

antibody assisted hNgb immobilization is described in Chapter 2 (Section 2.2.3).  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.2: (a) The mean I-V of 11 APTES (blue) and hNgb-modified pipettes (red) is shown as the solid 
line and the standard deviation is displayed by the shadow area. The voltage sweep rate is 50 mV/s. (b) 
Typical I-V curves after the APTES (blue) and hNgb (red) modifications and in the low voltage range (-15 
mV to +15 mV). (c) The Gp histogram of 11 nanopipettes after the APTES (blue empty columns) and hNgb 
modification (red partially filled columns). The conductance values (mean±s.d.) are 0.31±0.20 nS and 
0.14±0.08 nS, respectively. (d) The rectification ratio r (at ±0.4V) histogram of 10 nanopipettes after 
APTES (blue empty columns) and hNgb (red partially filled columns) modifications. All measurements 
were performed in 25mM KCl and 2.5 mM PB buffer (pH=7.0). 
 

Before using the anti-His antibody method, I first tested the amide bond method. 

The nanopipette was sequentially modified with poly-L-lysine (PLL) and polyacrylic acid 

(PAA) via electrostatic adsorption. Then the Cyt c proteins were immobilized to PAA 

through the amide bonds by using NHS-EDC coupling chemistry. Based on the 
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rectification ratio r of the modified nanopipettes, 1 out of 4 nanopipettes was modified. 

However, the measured ionic current was still not stable in my experimental conditions. I 

also tested the aldehyde-amino chemistry. In this method, the Cyt c proteins were 

covalently immobilized to the APTES modified nanopipettes through glutaraldehyde. 

Only 1 out of 6 nanopipettes showed satisfied Cyt c immobilization. Therefore, both 

methods did not work well as the anti-His antibody method. This may be attributed to the 

better controlled orientation of immobilized proteins and reduced modifications to the 

protein structure when using the anti-His antibody method. I monitored the surface 

modification by the change of I-V curves. 

 Figure 6.2a shows the typical I-V curves of the nanopipettes measured at neutral 

pH after the APTES modification and after the hNgb modification. As shown in Figures 

6.2b and 6.2c, the pore conductance Gp in the small bias range reduces about 1.7 times 

after the APTES modification and about 4 times after the hNgb modification. Using 

Equation 2.3, the pore diameter was calculated to reduce from 34 nm to 18 nm after the 

APTES modification and to 11 nm after the hNgb modification. Using these diameters, I 

obtained the similar current reduction in numerical simulations (Chapter 7). Considering 

the molecular size, it can be speculated that APTES most likely formed a multilayer at 

the quartz inner surface. The pore size reduction after hNgb modification is mainly 

attributed to the adsorption of anti-His antibodies. The surface coverage of hNgb is low 

(see the last paragraph of Section 6.3.3); therefore, the effect of hNgb modification to the 

pore size is ignored. The overall shapes of I-V curves change with the surface 

modifications. At -0.4V, the ionic current is suppressed after the APTES modification but 

enhanced after the hNgb immobilization. The surface charge at neutral pH becomes 
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positive after the APTES modification due to the amine groups of APTES and becomes 

negative after the immobilization of negatively charged hNgb. As shown in Figure 6.2d, I 

obtained histograms of the rectification ratio r (at ±0.4V) after the APTES and hNgb 

modifications. The mean value of r is 0.4 after the APTES modification and -0.28 after 

the hNgb modification. The sign of r is changed from positive to negative, indicating that 

the surface charge polarity is changed from positive to negative. 

The noise analysis of the modified nanopipettes supported the immobilization of 

hNgb (Section 2.2.3.2). As shown in Figure 6.3, the normalized noise always increases 

after hNgb modification. The increase of normalized noise can be attributed to the 

dynamic fluctuation of the modified proteins, which have been observed in lipid bilayer 

[41] and Nups proteins [42] modified nanopores. The noise analysis provides additional 

evidence of the surface modification of the quartz inner surface.  

 

 

 

 

 

 

Figure 6.3: Normalized noise power spectrum for bare pipette (blue) and hNgb modified pipette (red). 

The anti-His antibody assisted hNgb immobilization method was also confirmed 

by SPR (Chapter 3). SPR allows real-time and label-free studies of surface chemical 

modifications and protein-protein interactions. The gold surface cleaning and chemical 

modification procedures are explained in Section 2.1.2.2. The real-time chemical 
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modification of gold surface with cysteamine was confirmed at a flow rate of 0.05 

mL/min. As shown in Figure 6.4a, the baseline changes after the glutaraldehyde (GA, 

step 2 of Figure 2.3) and anti-His antibody (step 3 of Figure 2.3) modifications indicate 

the successful chip surface modification. After the antibody modification, the 

functionalized chip surface was treated with 1 M ethanolamine (pH 8.0) to quench excess 

aldehyde groups. Figure 6.4b shows the SPR result of the immobilization of His-tagged 

hNgb onto the antibody surface (step 5 of Figure 2.3). The hNgb modified surface is 

quite stable and did not change much even after the flowing of 1 M NaCl solution. 

 

 

 

 

 

 

Figure 6.4: SPR results. (a) Real-time SPR response of the Glutaraldehyde and anti-His antibody 
modifications. (b) Real-time SPR response of hNgb modification to the anti-His antibody modified surface.  
 
 I also studied the stability of the immobilized hNgb at the quartz surface. Typical 

results are shown in Figure 6.5a. I compared the ionic current (at V = -0.4V) of the 

modified nanopipette after rinsing with buffered 25 mM KCl solution (trace 1) and after 

rinsing with 1 M NaCl (trace 2). To avoid pipette-to-pipette difference, I used a 

normalized ionic current I୬ (I/I୭). To get	I୬, the ionic current (I) is normalized by the 

average current I୭ before any treatments. The magnitude of 	I୬  only increased slightly 

after rinsing with 1 M NaCl solution, suggesting a very strong binding between hNgb and 
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antibody. The small variation can be attributed to the removal of a few non-specifically 

adsorbed hNgb molecules.  

 

 

 

 

 

 

 

 

 

 

Figure 6.5: (a) Normalized current In time traces for the hNgb-modified nanopipette after 25 mM KCl 
rinsing (1) and after 1M NaCl rinsing (2). (b) In-t traces for a hNgb modified nanopipette after sequentially 
adding 50µM Cyt c (1), 25 mM KCl rinsing (2) and 1M NaCl rising (3). (c) The regeneration of a 
nanopipette. The solid squares represent In after 1M NaCl treatment and the open circles represent In after 
adding Cyt c with a series of concentrations. (d) The change of In for a hNgb modified nanopipette after 
sequentially adding 25 µM Cyt c (1), 1M NaCl rising (2), 25 µM Lsz (3), 25 mM KCl rinsing (4), and 1M 
NaCl rising (5). The data were the mean value of 10 seconds data and the error bar was from the standard 
deviation. All the results were measured at V = -0.4V. 
 

The result in Figure 6.5a was confirmed by SPR measurements (Figure 6.4b), 

which showed that 1 M NaCl could not remove His-tagged hNgb molecules that bonded 

to anti-His antibodies. Based on my experience, the hNgb modified nanopipettes are 

stable for about 2 days if stored at 4oC. 

6.3.3: Binding affinity 

Cyt c is another heme protein that is expressed in mitochondria of all aerobic 

organisms [43]. The Cyt c is a globular protein with a molecular weight of 12.4 kDa and 
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a hydrodynamic diameter of 2.5-3.4 nm [44]. Its pI is 10.2 [45], therefore, it is positively 

charged (with approximately +9e) at neutral pH. Because Cyt c and hNgb proteins have 

opposite charges at neutral pH, their binding is initialized by the electrostatic interaction. 

Based on the computational results of molecular docking, Cyt c binds to Ngb specifically 

at the exposed heme site through dipole-dipole interactions [46].  

 In order to use nanopipettes to study the interaction between hNgb and Cyt c, I 

measured the response of ionic current through hNgb-modified nanopipette after adding 

Cyt c in the bath solution. As shown in Figure 6.5b, I measured the ionic current at a 

fixed bias V = -0.4V after adding 50 µM Cyt c in the bath solution. The measurement 

was made after waiting for several minutes until the current was stabilized. An obvious 

decrease in the magnitude of In was observed (1 of Figure 6.5b). The decrease of In is 

attributed to the reduction of negative surface charge density because of the binding of 

positively charged Cyt c molecules to negatively charged hNgb molecules at the quartz 

surface. Next, I rinsed the pipette tip with 25 mM KCl solution and measured the ionic 

current again with no Cyt c in the bath; no obvious change of In was observed (2 of 

Figure 6.5b). This suggested that the Cyt c-hNgb complex was stable during 25 mM KCl 

solution rinsing. We then rinsed the pipette tip with 1 M NaCl and 25 mM KCl solution, 

sequentially. The measured ionic current (3 of Figure 6.5b) almost returned to its initial 

current level. This result suggested that 1 M NaCl solution can effectively weaken the 

interactions between Cyt c and hNgb, and remove adsorbed Cyt c proteins. Therefore, 1 

M NaCl can be used to regenerate the hNgb modified nanopipette surface after Cyt c 

binding. With this simple regeneration method, I investigated the current response of the 

same hNgb modified nanopipette to a series of Cyt c concentrations. One typical result is 
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shown in Figure 6.5c. The change of In magnitude is correspondingly larger when the Cyt 

c protein bath concentration is higher. For comparison, I studied the interactions between 

hNgb and lysozyme (Lsz) proteins. Similar to Cyt c, Lsz is also a globular protein with a 

molecular weight of 14.3 kDa [47] and a hydrodynamic diameter of 3.8 nm [48]. 

Lysozyme protein has net a positive charge (+8e) at pH=7.0 [49]. One example of the Lsz 

experiment is shown in Figure 6.5d. After exposing hNgb-modified nanopipettes to 

25µM Lsz, the magnitude of In is reduced as well, due to the adsorption of positively 

charged Lsz. The reduction is normally smaller than the case of Cyt c with the same 

concentration, which can be attributed to a reduced number of adsorbed Lsz molecules at 

steady state. In addition, the reduced current is often partially or fully recovered after 25 

mM KCl solution rising (4 of Figure 6.5d). This is very different from the Cyt c data in 

Figure 6.5b.  

 These observations, including the breaking of Cyt c-hNgb complex with 1M NaCl 

but not with 25 mM KCl, were also confirmed by SPR measurements. Figure 6.6a shows 

the typical SPR results when different concentrations of Cyt c were flowed over the 

hNgb-modified surface (Figure 6.4b). After the ~820 s of Cyt c injection, 25 mM KCl 

solution was flowed over the chip surface, which could not break Cyt c-hNgb pairs. 

However, the flow of 1 M NaCl solution could successfully remove Cyt c from the 

surface, and hNgb surface was regenerated. Control SPR experiments were also carried 

out to study the interactions between Lysozyme (Lsz) and hNgb. As shown in the 

sensorgrams of Figure 6.6b, the Lsz-hNgb complex is highly dissociable. After treated 

with 25 mM KCl, there is a large decrease of the response signal, and the response 

signals lost protein concentration dependence (as indicated by red arrow). In contrast, the 
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Cyt c-hNgb complex is stable during 25mM KCl flowing. Therefore, the interaction 

between hNgb and Lsz is not specific and different from the more specific interaction 

between Cyt c and hNgb.  

 

 

 

Figure 6.6: SPR results. (a) SPR response vs. time at different Cyt c concentrations (red color, 10µM; blue 
color, 25µM; and brown color, 50 µM) showing Cyt c-hNgb complex formation, dissociation, and surface 
regeneration. The immobilized Cyt c proteins cannot be removed by 25 mM KCl but can be removed by 1 
M NaCl. b) SPR sensorgrams for Lsz binding to hNgb. 
 

To quantitatively study the interactions between the proteins, I monitored the 

dynamic change of a normalized ionic current change ∆I୬ = ି(୍ି୍౥)୍౥   immediately after 

manually injecting 250 µL concentrated Cyt c solution in the 750 µL bath solution. Aided 

by the perturbations during the solution injection, the color of the whole bath solution 

uniformly became pale red in one second. I, therefore, concluded that Cyt c concentration 

in bath solution can reach a designed value in at most several seconds. I also estimated 

how long it will take for the solution in the nanopipette tip region to achieve bath Cyt c 

concentration. As suggested by the numerical simulation results explained in the 

following chapter (Chapter 7), it can just be considered the surface charge variation in the 

2µm long pipette tip region. Because of the small diameter and half cone angle, the 

volume of the 2 µm long pipette tip is only about 6.7 attoliters. Therefore, there are only 
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about ~100 Cyt c molecules inside the effective volume at concentration 25 µM. The 

number of Cyt c molecules that can arrive at the pore mouth per second from the bath is 

largely controlled by diffusion and can be estimated by flux=2πDCRc, where D is the 

diffusion constant of Cyt c (=6x10-7cm2/s, from Stokes’ law and Einstein-Smoluchowski 

relation), C is Cyt c bath concentration, and Rc is the capture radius, which is normally 

larger than the actual pore size. Compared with nanopores drilled on thin films (i.e., 

silicon nitride membrane), it is not trivial to define the pore length of the nanopipette. 

Therefore the actual pore radius R=5.5 nm was used for the capture radius Rc, which will 

underestimate the protein flux. When the Cyt c bath concentration is 25 µM, the flux is 

about 3 x 104 proteins per second. After the proteins arrive at the pore mouth, they can be 

driven by electrophoresis to move 1 µm distance inside the pipette tip in less than 1 

millisecond due to the enhanced electric field (about 105-106 V/m, simulation results, 

Figure 7.6a in the following chapter) at the pipette tip. Therefore, the Cyt c concentration 

inside and near the nanopipette tip should reach the bath solution concentration in less 

than a few milliseconds, and this mass transport time can be neglected in the following 

discussions. The current time traces for various Cyt c bath concentrations are shown in 

Figure 6.7a.  

The big spikes at the beginning of each trace are due to the disturbance by manual 

addition of proteins that takes about 10 seconds. This noise marked the start point of the 

traces. I aligned all the traces according to the onset position of the spikes. The gradually 

rising ∆In can be attributed to the binding kinetics between Cyt c and hNgb. After several 

minutes (i.e., after 4 minutes in Figure 7.8a), the normalized current change reached a 

steady state value of ∆Ineq, (indicated by the green shadow area). Interestingly, stepwise 



101 
 

current changes often appeared in the traces with low Cyt c concentrations (i.e., traces 2 

and 3 in Figure 6.7a). 

Figure 6.7: (a) ∆In-t traces for a hNgb modified nanopipette (pipette 2) after adding Cyt c in the bath 
solution with various concentrations (0-100 µM). (b) ∆In-t traces for a hNgb modified nanopipette after 
sequentially adding 25 µM Cyt c or 25 µM Lsz in the bath solution (step 2 and step 5 are Lsz; step 3,4, and 
6 are Cyt c). The displayed data in Figures 6.7a and 6.7b have the time interval of 0.1s between two points. 
(c) Curves 1-4, normalized current change at equilibrium ∆Ineq as a function of Cyt c concentration. Curve 5 
(brown diamond dots) is taken from Lsz and is shown here for comparison. The red triangle dots are 
simulated results as will be presented in the following chapter (Chapter 7). The solid lines are fitting curves 
using Equation 6.1.  
 
 At 1µM, there are only about four free Cyt c molecules at a steady state in the tip 

with attoliter sensing volume. These stepwise changes may reveal protein-protein 

interactions at the single molecule level. More experiments will be carried out in the 

future to obtain further insight about this phenomenon. As a control, I also recorded ∆In 

after adding 25 µM Lsz in the bath solution and the results (pink and red curves) are 

shown in Figure 6.7b. The same pipette was used to measure ∆In response when 

sequentially adding Lsz and Cyt c in the bath solution. Between the measurements, the 

1M NaCl rinse was used to regenerate the pipette surface. In the repeated experiments, 

smaller ∆Ineq was always observed for Lsz after reaching steady state (green shadow 

area). Therefore, ∆Ineq can reflect the interaction strength between proteins. Compared to 

Cyt c, the decrease of ∆Ineq for Lsz is obvious but not significant. This can be attributed to 

the following reasons: 1) the relative weak interaction between Cyt c and hNgb; 2) the 
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small number of proteins contributed to ∆Ineq; and 3) the nonspecific adsorption of Lsz 

to the surface.      

 Using the data shown in Figure 6.7a, I plotted the relationship between ∆Ineq and 

the Cyt c concentration. The results of 4 pipettes are shown in Figure 6.7c. These plots 

can be fitted by: 

         ∆I୬ୣ୯ = ∆୍౉౗౮౤[େ୷୲	ୡ][େ୷୲	ୡ]ା୏ౚ                   (6.1) 

where, [Cyt c] is the concentration of Cyt c in the bath solution and Kd is the equilibrium 

dissociation constant. ∆IMaxn is roughly the saturation value of ∆Ineq at a higher Cyt c 

concentration (i.e., at 100 µM) and can also be obtained from the fitting. By fitting the 

experimental results ∆Ineq-[Cyt c] using Equation 6.1 (solid lines in Figure 6.7c), I 

obtained ∆IMaxn and Kd for Cyt c-hNgb interactions. Although ∆Ineq and ∆IMaxn varied 

significantly, Kd values are quite similar. The average Kd value is 20 ± 4 µM. In a control 

experiment, I also studied ∆Ineq as a function of the Lsz concentration. As shown in 

Figure 6.7c (pipette 5), the Lsz concentration dependence of ∆Ineq is weak with obvious 

fluctuation. I could not fit the data using Equation 6.1 with R2 better than 0.5.  

 The SPR experiments were also performed between the proteins pairs in the same 

buffered 25 mM KCl solution. After the quasi-equilibrium response for Cyt c-hNgb 

interaction is reached (Section 3.3.6), as shown in inset of Figure 6.8, 25 mM KCl 

solution was flowed over the chip surface. For simplicity, the Kd for the Cyt c-hNgb 

interactions was determined using equilibrium analysis method. Figure 6.8 shows the 

SPR response vs. Cyt c concentrations over hNgb-immobilized surface (Figure 6.4b). 

Equation 3.5 was used to fit the experimental data and a Kd value of ~16 µM was 
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obtained. A similar Kd value for Cyt c binding to dithiothreitol (DTT) reduced hNgb in 

Tris buffer has also been reported [46]. The average Kd value (~20 µM) obtained from 

nanopipette experiments are very similar to the Kd value (~16 µM) obtained from SPR 

experiments. 

 

 

 

 

 

 

 

 

Figure 6.8: SPR response vs. Cyt c concentration plot. The experimental data (open circles) were fitted 
(continuous line) using Equation 5.4. Inset: concentration dependent SPR sensorgrams.  
 
 I also estimated the effect of the applied voltage on the measured Kd. The electric 

force slightly weakens the binding strength and an equation Kୢ(V) = Kୢ(V =0)	exp	(୊(୚,୶)୶ಊ୩ా୘ ) can be used to make a simple estimation. In this relationship, xβ is the 

binding length of the protein pairs, the electric force F(V,x)=E(V,x)Q. As a crude 

estimation, 1nm for xβ and +9e for the net charge Q of Cyt c were used. I used the value 

Electric field (E) resulted from numerical simulation (Chapter 7). To simplify the 

calculation, constant value 4 x 105 Vm-1 was used here for the electric field. With these 

approximations, I got	Kୢ(V) = Kୢ(V = 0) × 1.15. Therefore, Kd (V=0) = 17.4 µM and 

this corrected value is closer to the SPR result.   
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 I have obtained Kd of hNgb and Cyt c pairs from seven nanopipettes. Four of 

them gave similar Kd values near 20 µM as shown in Figure 6.7c. The other three 

nanopipettes gave values 35-60 µM. Considering the substantial fluctuations in the 

nanopipette radius and surface charge density, the reproducibility of Kd is very good. 

This is because Kd is determined by the ratio ∆Ineq/∆IMaxn at a series of the Cyt c 

concentrations, and the ratio should be independent of pore radius R, half-cone angle θ, 

and the surface charge. The PNP numerical simulation results (Chapter 7), confirmed that 

∆Ineq and ∆IMaxn change correspondingly with the variation of R and θ. And the higher 

sensitivity (larger ∆Ineq) can be achieved when the nanopipette has smaller R and θ. Using 

similar experimental conditions in numerical simulations (Chapter 7), the experimental 

results of ∆Ineq-[Cyt c] plots in Figure 6.7c was also reproduced.  

Based on simulation results (will be explained in Chapter 7), a linear relationship 

between ∆Ineq and ∆σ was obtained as shown in Equation 7.2:  

               ∆I୬ୣ୯ = α∆σ                  (7.2) 

where, α is a function of R, θ and V and is obtained from the slope of the ∆Ineq-∆σ plot. In 

the experiments, ∆σ is induced by the adsorption of positively charged Cyt c, which 

carries +9e charges at neutral pH. Based on a simple estimation (assuming the net charge 

of Cyt c will not change when forming Cyt c-hNgb complexes), ∆σ is given by Equation 

7.3: 

         ∆σ = ஘ి౯౪ౙ×୒౞ొౝౘ×ଽୣ୅                    (7.3)  

where, NhNgb is the total number of immobilized hNgb proteins in the effective quartz 

surface area A = 18 × 10-14 m2 (2 µm long pipette section), and θCytc is the surface 
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coverage of Cyt c. From the Langmuir adsorption model, θେ୷୲ୡ = [େ୷୲	ୡ][େ୷୲	ୡ]ା୏ౚ. Combining 

Equations 7.2, 7.3 and Langmuir adsorption model, it is obtained: 

            ∆I୬ୣ୯ = ஑×୒౞ొౝౘ×ଽୣ୅ [େ୷୲	ୡ][େ୷୲	ୡ]ା୏ౚ                        (7.4) 

Comparing Equations 7.1 and 7.4, it is obvious that	∆I୫ୟ୶ = ஑×୒౞ొౝౘ×ଽୣ୅ . Therefore, ∆Imax 

is proportional to the immobilized hNgb molecules. As mentioned earlier, ∆Imax can be 

derived from the experimental results in Figure 6.7c. I, therefore, can estimate the total 

effective number of immobilized hNgb molecules. I obtained 262 molecules for pipettes 

2 and 4, 322 for pipette 3 and 1168 for pipette 1. Obviously, the sensitivity of pipette 1 is 

better than other pipettes due to the presence of more receptors. For pipette 2, there are 

about 12 Cyt c proteins binding to hNgb at a steady state in the 2µm long pipette tip 

section of pipette 2 when the bath Cyt c concentration is 1µM and Kd is 20 µM. This 

estimation confirms that the stepwise change in Figure 6.8a is induced by a few 

molecules and suggests that the nanopipette can sense the surface charge change at the 

single molecule level. Assuming hNgb molecules are uniformly distributed and based on 

the footprint size of individual protein, the surface coverage of hNgb protein near the 

nanopipette tip is estimated to be below 10%. This surface coverage is low. 

Consequently, the diameter change induced by the hNgb modification and Cyt c 

adsorption can be ignored. If the surface modification to increase the surface density of 

receptor hNgb can be improved, it should also be able to enhance the sensitivity of the 

nanopipettes and detect analyte (Cyt c) induced current change at a much lower Cyt c 

bath concentration. The above estimations ignored the fluctuation of the protein net 

charge and assumed a uniform distribution of receptor hNgb. The deviation of these 
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assumptions will certainly affect the estimated results. However, the main conclusions 

from these estimations should still hold. 

6.4: Conclusions  

In summary, I have demonstrated that quartz nanopipettes with attoliter effective 

volumes can be used as a reliable and label-free analytical method to quantitatively and 

reversibly study protein-protein interactions based on the surface charge sensing. 

Although the variations of geometry and surface modification of nanopipettes affect the 

normalized current change, these changes do not affect the measured binding affinity 

significantly. Therefore, reproducible binding affinity for protein pairs can be obtained. I 

also demonstrated that the surface charge sensing method of nanopipette can detect the 

current change induced by the adsorption of a few proteins. It has the potential to reach 

single protein sensitivity. Numerical calculations and analytical models were used to help 

understanding the surface charge sensing mechanism of nanopipettes. 
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 CHAPTER 7: FINITE ELEMENT BASED NUMERICAL SIMULATIONS 

In Chapter 6, I introduced a new label free experimental technique in order to 

quantitatively study protein-protein interactions using quartz nanopipettes. This chapter 

deals with finite element based numerical simulations in order to support and to 

understand the nanopipette experimental results as presented in Chapter 6. The majority 

of the contents in this chapter have been adapted from my research results published in a 

peer reviewed paper [1]. 

7.1: Introduction 

The artificial nanopores with surface charge show electrical characteristics that 

are very similar to biological pores [2,3]. The flux ions through the nanopipette pore 

orifice are responsible for the charge transport. Due to the interaction between these 

mobile charges with the fixed charges on the conical nanopore wall, an interesting 

phenomenon is observed, which is known as Ion current rectification (ICR) [2,4,5]. ICR 

is the deviation of current-voltage measurements from the ohmic behavior. In other 

words the current at one voltage polarity is larger compared to reduced current at the 

same voltage but opposite polarity [5]. When the diameter of the pore orifice is 

comparable to the Debye screening length, the charged conical nanopores result ICR [6]. 

The Nernst-Plank equation as shown in Equitation 7.1 explains the physical 

properties of transport of ionic species whereas the relationship of ion concentrations 

with electric potential is given by Poisson’s equation as given by Equation 7.2 [5]: 

   ۸୧ = −D୧∇C୧ − ୞౟ୖୖ୘ D୧C୧∆Φ + C୧(7.1)         ܝ 

    ∇ଶΦ = −୊஫ ∑ Z୧C୧୧                      (7.2) 
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where, ۸୧ is the ionic flux, Di is the diffusion constant, Ci is the concentration, and 

Zi is the charge of ionic species i. Φ is the electric potential, u is the fluid velocity, F is 

the Faraday constant, T is the temperature, and ϵ is the dielectric constant of the medium. 

Herein, finite element based numerical simulations have been performed in order 

to support the nanopipette experimental results and to understand the fundamental charge 

sensing mechanism as presented in Chapter 6. Finite element based numerical 

simulations can be used to solve the problems that cannot be solved using analytical 

solutions [7].   

7.2: Methods 

7.2.1: Computation domain and mesh distribution 

The schemes of the computation domain and mesh distribution are shown in 

Figures 7.1a and 7.1b, respectively. The whole computation domain was discretized into 

free triangular elements. Rigorous mesh refinement was performed with the maximum 

and minimum mesh sizes were 800 nm and 0.08 nm, respectively.  

 

 

 

 

 

 

Figure 7.1: (a) Sketch of the computation domain for the nanopipette. The brown colored EF-FG section 
has surface charge. The drawing is not to scale. (b) Mesh distribution near the pore mouth. 
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7.2.2: Selection of simulation parameters and boundary conditions 

 

 

 

 

 

 

 

Table 7.1: Parameters used in numerical simulations using COMSOL multiphysics. 

Table 7.1 represents the parameters used to supply and appropriate boundary 

condition as mentioned in Table 8.2, for EF =2 µm, during simulations. The surface 

charge density of -4.5 mCm-2, applied potential of -0.4 V, and 5.5 nm pore radius was 

used in the simulations.   

 
  
 
 
 
 
 
 
 
 
 
 
Table 7.2: Selection of boundary values for the sketch as shown in Figure 7.1a. 

7.2.3: Simulation 

 I carried out numerical simulations using Poisson-Nernst-Planck (PNP) equations 

based on the finite element method using the software package COMSOL Multiphysics 

4.3b with chemical reaction engineering and AC/DC modules. Similar to previous reports 

Parameter Value 
Relative permittivity (εr) 80 
Temperature (T) 298 K  
Diffusion coefficient (K+) 1.957×10-9 (m2s-1) 
Diffusion coefficient (Cl-) 2.032×10-9 (m2s-1) 
Charge number (zK+) 1 
Charge number (zCl-) -1 
Maximum element (mesh) size 0.8 µm 
Maximum element (mesh) size 0.08 nm 
Maximum element growth rate 1.4 
Resolution of curvature 0.3 
Resolution of narrow regions 1 
Number of refinements 3 

Surface Poisson’s equation Nernst-Plank equation 
AB Axial symmetry Axial symmetry 
BC Constant electric potential Constant concentration 
CD Zero charge No flux (insulation) 
DE Zero charge No flux (insulation) 
EF Surface charge density No flux (insulation) 
FG Surface charge density No flux (insulation) 
GH Zero charge No flux (insulation) 
HI Zero charge No flux (insulation) 
IA Ground Constant concentration 
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[5,6,8-10], the fluid dynamics was ignored and Navier-Stocks equations were not used in 

the simulation, therefore the term “C୧ܝ” in Equation 7.1 was ignored in the simulation. 

The simulation was verified by comparing the results with published results [6] under the 

same conditions. The ionic current was calculated by integration of the ionic flux density 

along the electrode cross-section area using Equation 7.3: 

   I = −F׬ [۸(Kା) − ۸(Clି)] ∙ ܖ dSୗ                (7.3) 

 I carried out numerical simulations using Poisson-Nernst-Planck (PNP) equations 

based on the finite element method. I only considered the surface charge distributed in 

the 2µm long section of the pipette tip. As shown in Figure 7.2, this simplification is 

reasonable and the calculated ionic current is accurate enough (less than 1% difference). 

 

 

 

 

 

 

Figure 7.2: The ionic current at -0.4 V as a function of EF length (Figure 7.1a). The surface charge density 
σ of EF section is fixed at -4.5 mCm-2. The simulated current magnitude for 2µm EF length is only about 
0.83% higher than the one for 10 µm EF length. The half cone angle θ was always 1.6o. 
 
7.3: Results and discussion 

7.3.1: Effect of surface charge at low voltage 

As confirmed by the numerical simulations (Figure 7.3) and previous reports 

[10,11], the surface charge can be ignored at this small voltage range (i.e., V=kBT/e, 

where kB is the Boltzmann constant, T is the temperature, and e is the elementary electron 
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charge) and a simple analytical equation (Equation 2.3) can be used to derive the inner 

diameter. 

 

 

 

 

 

 

 

Figure 7.3: Simulated I-V curves (within -15 mV- +15 mV bias range) for the pipette with radius 17 nm in 
the presence and absence of surface charge. The half cone angle θ was always 1.6o. 
 
7.3.2: Determination of surface charge density 

 

 

 

 

 

 

 

Figure 7.4: Simulated I-V curves for non-modified nanopipettes in 25mM KCl.  

 Assuming a uniform distribution of surface charge density at the quartz surface, 

the surface charge density can be estimated using numerical simulations by comparing 

with the measured rectification ratio at ±0.4V. As shown in Figure 7.4, the shape and 
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magnitude of the simulated I-V are close to the experimental results (Figure 6.1a) using a 

surface charge density of -46 mCm-2.  

 

 

 

 

 

 

 

Figure 7.5: (a) The simulated I-V curves for APTES (blue circles) and hNgb modified pipettes (red 
circles). (b) The simulated I-V curves for after the APTES (blue) and hNgb (red) modifications and in the 
low voltage range (-15 mV to +15 mV). The simulation parameters are specified in the Methods section.  
 

I calculated the I-V curves at various surface charge densities (σ) and polarities. 

As shown in Figure 7.5a, the nanopipettes with surface charge density of +10 mCm-2 and 

-4.5 mCm-2 can better match the experimental results (Figure 6.2a) of ATPES- and hNgb-

modified nanopipettes, respectively. The simulated I-V curves at low bias range (-15 mV 

to +15 mV, Figure 7.5b) were also very similar to experimental results (Figure 6.2b). The 

above calculations were based on the uniform surface charge coverage assumption. I also 

used numerical simulations to understand the effect of non-uniform surface charge 

distribution to r when the average σ is the same.  

 
Table 7.3: Comparison of rectification ratio r. 

Surface charge 
density for Surface 

1, σଵ (mCm-2) 

Surface charge 
density for 

Surface 2, σଶ Average surface charge 
density, σ =(σଵ + σଶ)/	2 

(mCm-2)

Rectification 
ratio r 

-6.5 -2.5 -4.5 -0.38 
-2.5 -6.5 -4.5 -0.17 
-4.5 -4.5 -4.5 -0.29 
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As shown in Table 7.3, I compared the rectification ratio r for three different 

charge distributions. The 2 µm long charged section FE (Figure 7.1a) was divided into 

two equal halves. The first half starting from point F was named surface 1 and the second 

half was named surface 2. The magnitude of r was found to be larger if more charges 

locate near the pore and is smaller if more charges locate away from the pore. The 

variation of charge distribution can be one source of the experimental error for r.  

7.3.3: Simulation for electric field distribution 

 

 

 

 

 

 

 

 

Figure 7.6: (a) Simulated electric field (E) distribution (in logarithmic scale) as a function of position along 
the pore axis z. (b) Color coded potential (V) distribution and electric field lines (white) within the same 
region of Figure 7.6a. The white lines visualize the electric field distribution and the arrows indicate the 
direction of the electric field. (c) The zoom in image of V and E distributions near the pore mouth. Applied 
bias was -0.4V in all the simulations. 
 

In order to understand the electric field distribution near the pore, I performed 

numerical simulations. The electric field distribution along the pore axis was used in 

Chapter 6 in order to investigate the effect of applied voltage in the derived Kd value for 

Cyt c binding to hNgb. Figure 7.6a depicts the distribution of the simulated electric field 

(E), in logarithmic scale, as a function of position along the pore axis z. Figures 7.6b and 
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7.6c reveal the electric field E(x) distribution near the nanopipette tip when the applied 

bias is -0.4V. Figure 7.6c is the zoom in image of Figure 7.6b near the pore.  

7.3.4: Pipette geometry and binding constant 

 

 

 

 

 

 

 

Figure 7.7: (a) Simulated ∆Ineq-[Cyt c] plots at different half cone angles. The pipette radius R was always 
5.5 nm. (b) Simulated ∆Ineq-[Cyt c] plots at different pore radius. The initial surface charge density was -4.5 
mCm-2. All the simulated data (open dots) can be fitted (solid lines) using Equation 6.1 with Kd=20 µM. 
 

As shown in the PNP numerical simulation results (Figures 7.7a and 7.7b), ∆Ineq 

and ∆IMaxn change correspondingly with the variation of R and θ. Smaller R and θ induce 

larger ∆Ineq and ∆IMaxn. However, ∆Ineq/∆IMaxn remains same value and leads to the same 

Kd. These simulation results also suggest that the higher sensitivity (larger ∆Ineq) can be 

achieved when the nanopipette has smaller R and θ. As mentioned in Chapter 6 (Figure 

6.7c), the numerical simulation reproduced the experimental results of ∆Ineq-[Cyt c] plots.  

7.3.5: Charge sensing mechanism 

 To understand the charge sensing mechanism analytically, the nanopipette tip was 

first treated as a cylindrical nanochannel. Considering the very small half-cone angle, it is 

a reasonable first order approximation. The surface charge effect of a high aspect ratio 

nanochannel has been thoroughly investigated analytically and numerically [10,12,13]. 

For the analytical model, the ionic conductance through a long nanochannel has a linear 
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term proportional to the surface charge. Therefore, the relative current change should be 

proportional to the surface charge change ∆σ. I also use PNP equations to numerically 

calculate ∆Ineq as a function of ∆σ for a nanopipette with the same R (5.5nm), θ (1.6o), 

and σ (-4.5 mCm-2) as in the experiments.  

 As shown in Figure 7.8, a linear relationship between ∆Ineq and ∆σ was obtained. 

Based on this relation and other analytical equations, the number of immobilized hNgb 

proteins and bound Cyt c proteins were estimated. These estimated results and related 

discussion have already presented in Chapter 6. 

 

 

 

 

 

 

 

Figure 7.8: The simulated result (blue open circles) of ∆In as a function of ∆σ. The continuous line is the 
linear fit. 
 
7.4: Conclusions  

Based on the numerical simulation results, the ionic current through the conical-

shaped nanopipette was found to be very sensitive to the surface charge variation near the 

pore mouth. The numerical simulation results were useful not only to validate 

experimental nanopipette results but also very helpful in the understanding of 

fundamental charge sensing mechanism. 
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 CHAPTER 8: MASS TRANSPORT THROUGH VERTICALLY ALIGNED 

LARGE DIAMETER MWCNTs EMBEEDED IN PARYLENE 

This chapter presents a nanopore technique to investigate the translocation of 

small ions through CNT based nanoporous membrane device. The majority of the 

contents of this chapter have been adapted from my research results published in a peer 

reviewed paper [1].  

8.1: Introduction 

In recent years, there has been enormous interest in utilizing carbon nanotubes as 

nanochannels or nanopores [2-9]. From a biological point of view, the CNT is an ideal 

model to help understand the transporter proteins on the cell membrane that work in 

aqueous environments with hydrophobic inner walls and nanometer channel sizes. CNTs 

have several advantages as nanopores or nanochannels. (1) They require no special 

nanofabrication to achieve a pore size of molecular size (ranging from less than 1 nm to 

more than 10 nm). They have an atomically smooth surface and perfect uniformity over 

long distances, resulting in frictionless motion of fluid and particles. (2) For high quality 

CNTs, the chemistry and structures of the interior surface are well defined, which 

simplifies theoretical simulations. (3) The excellent electrical properties of CNTs provide 

new routes to electrical detection, trapping and manipulation of charged biomolecules 

and nanoparticles. (4) Well defined sites are available for chemical functionalization at 

the ends of the tubes. Such modifications will be extremely useful for ion and molecule 

selection, gating or separation.  

Recent research on CNT based nanofluidic devices has yielded exciting 

applications in efficient gas filtration, chemical and biological separation, water 
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desalination and programmable transdermal drug delivery [10-12]. I have used parylene 

deposited vertically aligned MWCNT forest membranes (about 7 nm in tube inner 

diameter and 42 µm in tube length). Parylene film is chemically inert, electrically 

resistive and pinhole free and has low permeability to moisture and gases. Parylene is 

also known for its capability to conformably cover all surfaces regardless of the 

configuration of the surface, including configurations with high aspect ratio [13,14]. 

MWCNT forests embedded in parylene have been used in several applications, including 

electrochemical sensors [14-16], but not as a membrane for mass transport.  

Herein, I used this new type of CNT membrane to help improve the understanding 

of several aspects such as the transport of particles through CNTs under electric field. In 

this dissertation research, the translocation of small molecules and nanoparticles is 

studied, especially driven by an electric field. The flux of charged molecules through 

CNT nanopores is contributed by several factors as implied by Equation 8.1 [17-19]: 

                                     J୮୭୰ୣ = −D ୢେୢ୶ + ஫୰మ∆୮଼ஜத୐ − ୸୊ୈୈ୘ ୢ୙ୢ୶ + ϑୣ୭C                                   (8.1)  

where, J୮୭୰ୣ is the flux,	D is the diffusion coefficient,	C is solute bulk concentration, 
ୢେୢ୶ is 

the concentration gradient, ϵ is the relative porosity of the porous membrane,	r is pore 

radius,		p is applied pressure, 	μ is the dynamic viscosity,	τ is the tortuosity,	L is pore 

length,	z is the number of unit charge of the solute,	R is the molar gas constant,	T is the 

absolute temperature,	ୢ୙ୢ୶ is the electric field gradient, and	ϑୣ୭ is electro-osmotic velocity. 

The presence of fixed surface charge on the solid pore wall establishes a layer of opposite 

charges (counterions), in solution, in order to maintain electro-neutrality. This system, 

comprised of charges and the layer of counterions, is known as electrical double layer 
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(EDL). The two electrokinetic phenomena, electrophoresis and electro-osmosis, are the 

major means of transport of the charged molecules under the effect of applied electric 

field. The thickness of EDL and the mobile counterions affect the electrokinetics [20]. 

Electrophoresis is the drifting of charged species relative to their background aqueous 

medium [21] whereas electro-osmosis is the movement of the liquid medium, containing 

charged species, as a whole over the charged surface [20]. Depending upon charge and 

molecular structure of the charged species, they interact differently with nanopore walls. 

These interactions enhances the selectivity of CNT pores to the charged species [1]. 

Molecule-carbon surface interactions were found to play important roles in the 

transport of these particles. Under an electric field in the range of 4.4 ×104 Vm-1, 

electrophoresis instead of electro-osmosis was found to be the main mechanism for ion 

transport. Small charged molecules and 5 nm gold nanoparticles can be driven through 

the membranes by an electric field. Due to the weak electric driving force, the 

interactions between charged molecules and the hydrophobic CNT inner surface play 

important roles in the transport, leading to enhanced selectivity for the small molecules.  

8.2: Experimental methods 

8.2.1: MWCNT forest growth and characterization and Parylene coated MWCNT forest 

membrane fabrication  

Figure 8 depicts the characterization and schematic of the MWCNT forest 

membrane (Section 2.3.5) that was used in this dissertation for the investigation of the 

translocation of small charged molecules. Figure 8.1a represents SEM and Figure 8.1b 

represents low resolution TEM image of MWCNTs. The inset in top left corner in Figure 

8.1b represents the high resolution image of one MWCNT and top right corner represents 
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the histogram of inner diameters of these MWCNTs. Parylene was deposited to coat the 

MWCNTs forest. Figure 8.1c represents the SEM image of the cross-section of the 

parylene coated MWCNT membrane. After parylene coating the substrate was treated 

with two step sequential RIE in order to remove excess parylene and SiN membrane from 

backside of the substrate.  

 

 

 

 

 

 
 

 

 

Figure 8.1: (a) SEM image of a cross-section of the as-grown vertically aligned MWCNT forest. The 
average height of the CNT forest is about 42 µm. (b) Low-resolution TEM image of a large number of 
MWCNTs. The inset in the top left corner is a high resolution TEM image of one MWCNT. The inset in 
the top right corner shows the histogram of inner diameters of these MWCNTs. (c) A SEM image shows 
the cross-section of the parylene coated MWCNT membrane. (d) A SEM image shows the membrane 
surface after oxygen plasma treatment. (e) A schematic diagram of the parylene encapsulated MWCNT 
forest membrane on a silicon support with a square window with size 35–100 µm. 
 

I performed PAN etching of those samples as outlined in Section 2.3.2.2. The 

samples after PAN etching was then cleaned with copious amount of DI water and dried 

gently with Ar gas. Then oxygen plasma (2-4 min, 7.2 W, 550-600 mTorr) was then used 

to remove the excess parylene, and to expose and open the CNT ends. The surface of the 

membrane after oxygen plasma is shown in Figure 8.1d. The as-fabricated parylene 

surface is hydrophobic. However, the parylene surface becomes hydrophilic after oxygen 
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plasma treatment. The hydrophilic parylene surface is stable and facilitates the transport 

of particles. A schematic diagram of the final device is shown in Figure 8.1e. The “back 

side” and “front side” of the device are labeled in Figure 8.1e and the same definition is 

used to identify the two sides of the final device throughout this dissertation. Si/SiN 

substrates without MWCNTs growth (only with SiN window was opened at the backside, 

Figure 8.1e), was etched using KOH (Section 2.3.2.1) to fabricate the free standing SiN 

membranes). These SiN membranes were used in control experiments.    

8.2.2: Porosity measurements  

It is crucial to determine the space occupied by MWCNT pores compared to the 

total membrane space, which is called porosity. I measured the porosity of a CNT 

membrane (after 3 min oxygen plasma treatment) using a KCl diffusion method [22]. A 

pore area of 7.2 × 10-11 m2 and porosity of 0.89% was obtained for one of the CNT 

membranes. Based on the average CNT diameter (7 nm), the obtained CNT area density 

was 0.23×1011 cm-2. This is in line with estimates by other groups [8,23] but subject to 

considerable uncertainty, for example, the pore diameter estimated from the membrane 

conductance is about a factor three too large (an error that may also reflect enhanced ion 

mobility in the interior of the CNTs). 

8.2.3: Materials, chemical reagents and solution preparation 

5 and 10 nm gold nanoparticles (Au NPs) were purchased from Ted Pella. These 

gold nanoparticles are capped with negative citrate ligand and the size is very accurate, 

with only 10% size variation. No aggregation was observed when these particles were 

dissolved in pure water or aqueous solution with low salt concentration (<15 mM KCl 

solution) [24]. Other chemical reagents were purchased from Sigma Aldrich and used 
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without further purification. All solutions were prepared using deionized (DI) water (~18 

MΩ) from a water purification system (Ultra Purelab system, ELGA/Siemens). The 

prepared salt solution was filtered through a 0.2 µm filter and degassed by sonication. For 

comparison, we also used anodic aluminum oxide (AAO) nanoporous membranes 

(Anodisc, Whatman) with pores of nominal diameter 20 nm and thickness of 60 µm. The 

AAO membrane was placed on the same silicon chip with a small opening in the center 

formed by breaking SiN membrane. The porosity of the AAO membrane is 25–50% of 

the total exposed surface area.  

8.2.4: Measurement 

 

 

 

 

 

 

Figure 8.2: (a) Diagram of the ionic current measurement setup, h is the solution height difference between 
two reservoirs. (b) The ionic conductance versus KCl concentration on a log–log scale. The solid line is a 
linear fit to the experimental data. The inset shows the I-V curve of the membrane in 100 mM KCl solution.  
 

The experimental setup is shown in Figure 8.2a. The fabricated CNT forest 

membrane was sandwiched between two flat PDMS slabs (Section 2.3.4) with punched 

holes (~1 mm diameter) as fluid pathways. The sandwich structure was further clamped 

between two polystyrene optical cuvettes with 1 mm diameter fluid holes. The 

measurement setup was placed in a home-built Faraday cage to reduce noise. Bias was 

applied through Ag/AgCl electrodes (prepared by dipping clean 0.25 mm diameter Ag 
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wire into bleach to a distance of 3-4 cm for 30 min) across the membrane at a fixed 

distance (~1.2 cm). The applied bias was mostly below 2 V and never above 3 V to avoid 

water electrolysis, electrode polarization, and electric potential damage to molecules.  

The measurement was carried out at room temperature (22oC). No temperature 

change in solution was observed when applying 3 V for 2 h across the CNT membrane. 

The cis side was always grounded and the applied bias was defined as positive when the 

potential at the trans side was more positive. The analytes were always added on the cis 

side. The ionic current data were collected with a Keithley 2636 A sourcemeter (Keithley 

Instruments). A pressure gradient was introduced by adjusting the height difference 

between the water surface level in cis and trans reservoirs. No obvious change in the 

height difference was observed for a 10 hours experiment. The measured ionic current of 

the same device was normally stable for weeks if the membrane was rinsed properly and 

stored in water all the time. As control experiments, I performed I-V measurements 

without the presence MWCNT membrane in the ionic pathway. I also measured the ionic 

conductance for the 1mm diameter PDMS channel at various concentration of KCl 

solution, as shown in Figure 8.3a. The measured conductance values (solid blue triangles) 

matched very well with the calculated conductance values (open blue triangles) using the 

conductivities (σ) of KCl solutions and the geometry parameters of the PDMS channel 

(G = ஢୅୐ , A and L are the cross-section area and length of the channel respectively). I also 

put the measured the ionic conductance through the MWCNT membrane (same as Figure 

8.2b) here for comparison. The current through the PDMS channel is about one order 

higher than the current we measured through CNT membrane when the KCl 

concentration is above 0.1mM and hence the electrical resistance of the fluidic pathway 
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(without the membrane) is at least one order smaller than the resistance of the CNT 

membrane. 

 

 

 

 

 

Figure 8.3: (a) The log-log plot of ionic conductance as a function of KCl concentration for both CNT 
membrane (blue open circles) and 1mm diameter PDMS channel (solid blue triangles). The experimental 
data (blue open circles and solid blue triangles) were fitted by linear functions and are plotted as solid lines 

(red). The open blue triangles are calculated conductance using 	G = ஢୅୐ . (b) Log-log plot of ionic 

conductance as a function of KCl concentration for both CNT membrane (blue open triangles) and AAO 
membrane (open green circles). The experimental data were fitted by linear functions (solid red lines). 
 

I also used Anodic aluminum oxide (AAO) nanoporous membranes (Anodisc, 

Whatman) with pores of nominal diameter 20 and thickness of 60μm. I first measured the 

ionic conductance through these AAO membranes as a function of KCl concentration. As 

shown in Figure 8.3b, the ionic conductance through AAO membranes is bigger (less 

than 10 times) comparing with MWCNT forest membranes. Considering the much bigger 

pore area of the AAO (25-50% porosity) membrane than CNT membrane (normally 

below 1%), an enhanced ionic flow through MWCNT membrane under an electric field is 

expected. 

8.3: Results and discussion 

I carried out several control experiments to prove that, within the applied bias and 

pressure range, the transport was through the inside of the CNT and not through the 

cracks and voids in the parylene film. I measured the ionic current through the membrane 

by using the setup as shown in Figure 8.2a. When the CNT membrane was not treated by 
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oxygen plasma, there was no measurable ionic current but the ionic current was 

detectable after 1 min oxygen plasma treatment. The oxygen plasma was generated at 

10.2 W RF power in a quartz vacuum chamber with pressure of 550 mTorr. The result for 

one device is shown in Figure 8.4a.  

I also studied the translocation of gold nanoparticles (Au NP) with well-defined 

size under pressure and electric field. The 5 nm Au NP is smaller than the average CNT 

inner diameter and the 10 nm Au NP was larger than the average CNT inner diameter. I 

measured more than 10 membranes and about 80% of the membranes only allow 5 nm 

Au NPs to pass with only electric field applied (Figure 8.5b). However, the ratio was 

reduced to about 40% when a pressure (294 Pa, about 3 cm height difference) was 

applied. I discarded the 60% membranes that also allowed the passage of 10 nm NPs. 

This fact also suggests that these parylene encapsulated CNT membranes are not suitable 

for high pressure applications. Therefore, I mainly studied the transport driven by 

electrical field. If a pressure gradient was needed, the pressure was always below 294 Pa, 

a level at which no leaks were detected in the parylene membranes. 

 

 

 

 

 

 

Figure 8.4: (a) I-V curves as before and after oxygen plasma treatment of one device. (b) UV–vis spectra 
of 5 nm (red) and 10 nm (blue) Au nanoparticles at the trans reservoir after applying a 2 V bias for 6 h. No 
pressure is applied. The concentration of Au NPs at the cis reservoir is 60 µM in 1 mM KCl solution. 
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To understand the ion transport mechanisms in these large diameter MWCNTs, I 

measured the ionic conductance in KCl solution as a function of KCl concentration. I first 

measured the ionic current through the CNT forest membrane at different bias. The 

current-voltage curves were symmetric in the applied bias range (<2 V), and a typical 

curve taken in 100 mM KCl solution is shown in the inset of Figure 8.2b. The ionic 

conductance can be derived from the slope of the I-V curve. I then plotted the ionic 

conductance data as a function of KCl concentration in a logarithmic scale. As shown in 

Figure 8.2b, the ionic conductance was proportional to the KCl concentration when it is 

above 0.1 mM. A deviation was observed when the concentration was below 0.1 mM. 

The deviation at low salt concentration was previously explained by surface charge on 

the nanochannel/nanopore [25]. However, the conductance departs from a linear 

relationship at much higher salt concentration (>10 mM) for silica nanochannels with 

surface charge density ~60 mCm-2 at pH 7. Even for an octadecyltrichlorosilane (OTS) 

modified silica channel with significantly reduced surface charge density, the deviation 

appears at around 1 mM KCl concentration [25]. Therefore, I concluded that the surface 

charge density at the inner surface of MWCNTs was extremely low. The following are 

possible reasons why the surface charge density is low at the inner surface of the 

MWCNTs. (1) Because of the inert nature of CNT inner surface; there are very few 

charged groups at the CNT inner surface. Charged groups (i.e. carboxyl groups) 

distribute mostly at the CNT ends. (2) The CNT inner surface may also acquire charges 

due to polarization when contacting charged solution or being affected by nearby 

environmental charges. However, the net charge density of the solution inside the large 

diameter MWCNT is low. In addition, the conducting outer layers of MWCNTs can 
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effectively screen the environmental charges. The proportionality at KCl concentration 

0.1 mM-1 M suggests that the transport mechanism under electric field is electrophoresis. 

This is very different from the transport mechanism in individual SWCNTs with inner 

diameter below 2 nm [26,27]. A unique power law relationship with exponent smaller 

than 1 is always observed in these single SWCNT fluidic devices. The origin of such 

behavior is attributed to the strong electro-osmotic flow inside smaller diameter 

SWCNTs. In summary, the electro-osmotic flow is much weaker in these MWCNTs of 7 

nm average diameter compared with small diameter SWCNTs. Due to the low surface 

charge; ion enrichment and ion depletion are not expected in my system [28,29]. 

Electrophoresis will be the dominant transport mechanism. This conclusion is also 

consistent with previous experiments and theoretical calculations [22,30]. It is worth 

noting that increased electro-osmotic flow has been observed by grafting small charged 

molecules at the inner surface of MWCNTs [31]. However, such modification will also 

increase the roughness of the CNT inner surface and a decrease in slip length is expected.  

 

 

 

 

 

 

Figure 8.5: (a) Schemes of the molecular structure of the Fe(CN)଺ଷି anion and Ru(bipy)ଷଶା cation and their 
hydrated diameters. (b) The measured I-V curves when the cis and trans reservoirs were filled with KCl/KCl  (black curve), 	KଷFe(CN)଺/KCl  (green curve), Ru(bipy)ଷClଶ/KCl  (blue curve), and Ru(bipy)ଷClଶ/	KଷFe(CN)଺ (red curve), respectively. The concentration of KCl solution was 75 mM and the 
concentration of Fe(CN)଺ଷି  anion and Ru(bipy)ଷଶା  cation were 12.5 and 25 mM, respectively. (c) The 
measured I-V curves for the same ionic pathway without the presence of MWCNT membrane. 
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I then studied the transport of small molecules through these membranes. The Fe(CN)଺ଷିanions (hydrated diameter ~0:95 nm) [10] and Ru(bipy)ଷଶାcations (hydrated 

diameter ~1:18 nm) [10] were used in this study. The molecular structures of both ions 

are shown in Figure 8.5a. I first measured I–V curves and the results are shown in Figure 

8.6b. The solutions in the cis/trans reservoirs are 	KCl/KCl , 	KଷFe(CN)଺/KCl , 	Ru(bipy)ଷClଶ/KCl	and 	Ru(bipy)ଷClଶ/	KଷFe(CN)଺ . The concentration of 	KCl  solution 

was always 75 mM, and that of 	KଷFe(CN)଺  and Ru(bipy)ଷClଶ  solutions were always 

12.5 and 25 mM, respectively, which kept the solution ionic strength at both reservoirs 

the same (Iେ = 1 2ൗ ∑C୧Z୧ଶ). As shown in Figure 8.5b, at the same bias (i.e. 0.25 V), the 

ionic current magnitude is in the following sequence: [KCl/KCl] > [	KଷFe(CN)଺/KCl] > 

[Ru(bipy)ଷClଶ/KCl] > [Ru(bipy)ଷClଶ/	KଷFe(CN)଺]. The same sequence was observed 

for all the MWCNT membranes we measured. In order to verify the CNT effect, we also 

performed I-V measurements without the presence of MWCNT membrane in the ionic 

pathway. The measured ionic current magnitude at the same bias (i.e. 0.25 V) is in the 

following sequence: [ KCl/KCl ] > [ Ru(bipy)ଷClଶ/KCl ] > [ 	KଷFe(CN)଺/KCl ] > 

[Ru(bipy)ଷClଶ/	KଷFe(CN)଺] as shown in Figure 8.5c.  

Here the ionic current is contributed by the transport of all the ion species in the 

solution. In order to study the transport of individual ion, I also directly measured the 

concentration of translocated ions at the trans reservoir after applying a bias between two 

reservoirs for 90 min. In this experiment, the cis reservoir was filled with 25 mM 	KଷFe(CN)଺ or Ru(bipy)ଷClଶ in 100 mM KCl (pH 7) solution. The trans reservoir was 

filled with 100 mM KCl solution. The concentration of Fe(CN)଺ଷି ions was determined by 
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the by the absorption peak in UV-vis measurements or by the pronounced redox peak at 

0.18 V versus Ag/AgCl in square wave voltammetry. The concentration of Ru(bipy)ଷଶା 

ions was determined by the two adsorption peaks at 285 and 450 nm in UV–vis spectra. 

As shown in Figure 8.6a, the anion Fe(CN)଺ଷି can only be driven across the membrane by 

positive bias and the cation Ru(bipy)ଷଶା  can only be driven across the membrane by 

negative bias. In addition, the concentration of transported ion increased with the applied 

bias. At zero bias, the concentration of transported ions was not detectable, confirming 

that diffusive transport was inefficient for these membranes. These results are consistent 

with the electric field induced electrophoretic transport. Of the two ions, the anion Fe(CN)଺ଷି  is apparently much easier to transport through the MWCNTs and the 

concentration is about 25 times higher at the trans reservoir when the bias magnitude of 

1.5 V is applied for 90 min between the two reservoirs. This observation is consistent 

with the I-V curves in Figure 8.5b. What is the reason for the large difference in transport 

between anion Fe(CN)଺ଷିand the cation		Ru(bipy)ଷଶା?  

 

Figure 8.6: (a) The concentration of Fe(CN)଺ଷି anion (red square) and 		Ru(bipy)ଷଶା cation (blue triangle) 
at the trans reservoir as a function of the applied bias. The time was always 90 min. The solid lines are 
guides for the eye. (b) The concentration of anion Fe(CN)଺ଷି (red square) and cation 		Ru(bipy)ଷଶା (blue 
triangle) at the trans reservoir as a function of the applied bias, when MWCNTs membrane was replaced 
by AAO. The time was always 90 minutes. The solid lines are guides for the eye. 
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Interestingly, much higher rejection of cation	Ru(bipy)ଷଶା than anion Fe(CN)଺ଷି is 

opposite to the observation in small diameter DWCNTs [10], in which the anion is 

rejected by the negatively charged carboxyl groups at the CNT ends. Because of the 

much larger diameter of MWCNTs in these membranes, the charges carried by the ions 

and at the CNT ends are likely fully screened by the electric double layer (EDL) at 100 

mM KCl concentration. Therefore, the electrostatic interactions between ions and CNT 

ends are not important. In addition, the hydrated diameter of the Fe(CN)଺ଷି anion is only 

slightly smaller than that of the Ru(bipy)ଷଶାcation. So size induced steric hindrance will 

not contribute significantly to such obvious ion selectivity. One reason may be the 

different bulk electrophoretic mobility between Fe(CN)଺ଷି (~10.4 × 10-8 m2 s-1V-1) and Ru(bipy)ଷଶା (~4.0 × 10-8 m2 s-1V-1). However, the mobility of Fe(CN)଺ଷି is only about 2.5 

times higher than the mobility of		Ru(bipy)ଷଶା , which cannot account for the 25-fold 

concentration difference at the trans reservoir. The main reason may be the stronger 

molecular interaction between the cation 	Ru(bipy)ଷଶା and the curved CNT inner surface. 

The origin of the interaction may be van der Waals forces and pi–pi stacking between the 

rings of the 	Ru(bipy)ଷଶା cation and the CNT inner surface.  

For control experiments, I also used AAO nanoporous membranes with pores of 

nominal diameter 20 and thickness of 60μm. The ionic conductance through these AAO 

membranes as a function of KCl concentration is shown in Figure 8.3b. Figure 8.6b 

represents the transport of two small molecules 	KଷFe(CN)଺ and Ru(bipy)ଷClଶ through 

AAO membrane. Between the two ions, the anion Fe(CN)଺ଷି was easier to be transported 

through the MWCNTs and the concentration was about 6 times higher at the trans 

reservoir when the bias magnitude of 1.5V was applied for 90 minutes between the two 
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reservoirs. This permittivity difference may due to the surface interaction. This control 

experiment supports the view that the ion selectivity in the CNT membrane is mainly due 

to surface interactions. 

8.4: Conclusions 

In contrast to small diameter DWCNTs and SWCNTs, the electro-osmosis in the   

large diameter MWCNTs is weak. Therefore, an electric field can only provide a weak 

force to drive ions and small molecules. The transport is also significantly affected by the 

interactions with the hydrophobic CNT inner surface, leading to enhanced selectivity for 

small molecules.  
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CHAPTER 9: SUMMARY AND FUTURE RESEARCH 

9.1: Summary of results 

In summary, this dissertation presents the optimization of a customized SPR 

instrument for quantitative study of protein-protein and protein-DNA molecular 

interactions. Using the customized SPR, a Kd value of ~13 µM was obtained for Cyt c-

hNgb molecular interactions. This Kd value is in a general agreement with a published 

result. Based on the SPR results, it was reasonable to confirm that there is no substantial 

influence of CD-loop flexibility, due to the disulfide bond in between Cys 46 and Cys 55 

amino acid residues, on the affinity of hNgb with Cyt c. The use of the customized SPR 

system was extended to investigate protein-DNA interactions. Kd values of ~8 nM and 

~15 nM in the presence and absence of Mg2+ for EctopoI-pBAD/Thio interaction were 

determined, respectively. A larger dissociation rate constant (kd) was obtained for 

interaction between Mg2+ bound EctopoI and pBAD/Thio supercoiled plasmid DNA. 

These SPR results suggested that the enzyme turnover would be enhanced in the presence 

of Mg2+.  

To date, there is no clear procedure to analyze biphasic SPR data. A theoretical 

approach based on the analytical solution of linear biphasic rate equations has been 

introduced. Based on this approach one can confidently chose the correct underlying 

biphasic interaction mechanism and determine the kinetic parameters with high 

confidence levels. 

This dissertation introduces a new label free analytical method to quantitatively 

study the protein-protein interaction, based on a charge sensing mechanism. Using 

chemically modified quartz nanopipettes, the derived Kd value (~20 µM) for the Cyt c-
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hNgb complex formations matched very well with SPR measurements. Finite element 

based numerical simulations also reproduced the nanopipette experimental results. All 

together, these results suggest that nanopipettes have a potential to quantitatively study 

protein-protein interactions in attoliter sensing volumes.  

In addition, the translocation of charged molecules through CNT nanopores under 

the effect of an electric field has also been investigated. The observed molecule-based 

selective nature of hydrophobic and nanometer sized CNT pore walls are helpful to 

understand the selective nature of intracellular transport.  

9.2: Future research 

This dissertation also aimed to develop new SPR sensors by incorporating CNTs 

on the gold surface. This research was started with a hope to achieve better sensitivity of 

the SPR sensor. In order to prepare CNT film on the gold surface, one milligram of 

commercially available Hipco purified CNTs was put in 1% V/V aqueous solution of 

Triton X-100 and sonicated for 1 hour.  The mixture was centrifuged at a speed of 

18800X and at 4oC for 40 minutes. The appropriate amount of the centrifuged mixture 

(usually 2.5-4 ml) was vacuum filtrated so that the CNTs could make a layer on the filter 

paper (Nitrocellulose membrane filter, Millipore Corporation) with pore size 0.1 µm. 

Then the membrane filter (still inside the filtration system) was washed with a copious 

amount of DI water. The gold coated glass chip was cleaned in piranha solution (conc. 

H2SO4: H2O2∷3:1) for 5 minutes and dried with Argon gas. The Nitrocellulose 

membrane filter with CNTs was faced upside down so that CNTs would have contact 

with the gold surface. The chip and membrane filter assembly was sandwiched in 

between general laboratory filter paper (Fisherbrand) and was pressed overnight with a 
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flat load of 44 lbs., with even surface, overnight. On the following day the load was 

removed and the membrane filter was peeled off from the gold surface. The gold chip 

with CNT layer was annealed in an argon environment at 270oC for 20 hours. I used the 

furnace in Dr. Wenzhi Li’s lab at FIU for annealing. The Veeco MultiMode AFM 

microscope operated in tapping mode in air was used to confirm the presence of CNT 

thin film on gold. The oscillation amplitude, scan rate, and scan size were varied for 

different scans in order to obtain the best results. Aluminum coated silicon (N-type) AFM 

tips (ACTA-SS-10, NanoScience instruments, k ~ 25-75 N/m) was used in all AFM 

scanning. All the experiments were conducted at room temperature. AFM experiments 

were further processed by the Gwyddion Image Analysis Software. 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.1: AFM images of (a) hydrogen flamed and (b) CNT transferred gold coated glass chip. (c) SPR 
curve with the CNT membrane transferred gold ship. (d) SPR sensorgram for the sensor chip as mentioned 
in Figure 9.1b. 
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 Figure 9.1a shows the AFM image of the hydrogen flamed cleaned gold chip and 

Figure 9.1b shows the gold chips with CNTs. As shown in Figure 9.1c, the SPR dip, for 

CNT transferred chip, was found to be much broader as compared to cleaned gold 

without CNTs (Figure 5.1b). This might be due to much thicker CNTs on the gold 

surface, and it was very difficult to maintain the uniform thickness of CNT layer in the 

modified chip. On top of this the SPR response was found to be very unstable. The layer 

of CNTs transferred onto the gold chip using the protocol described here might not reside 

well on the gold chip. Therefore, it will be interesting to see the SPR results with atomic 

thick graphene layer (layers) grafted on the gold chip with special procedures. 

The extension of theoretical simulations for analysis biphasic SPR data to the 

non-linear rate equations and the data analysis procedures coded in a computer program 

would make a complete toolset in order to understand and analyze the biphasic SPR data. 

This will help experimentalists to identify the correct biphasic SPR interactions and to 

extract the rate constants with high confidence level.  

Based on my expertise on nanofabrication, I have started fabricating a nanohole 

SPR instrument. As shown in Figures 9.2a and 9.2b (optical microscopy images), the free 

standing SiN film (325 nm) was fabricated using the nanofabrication techniques, 

including photolithography and the dry/wet chemical etching procedures. The inset of 

Figure 9.2a depicts the optical image for purposefully broken SiN membrane for 

comparison. After SiN membrane fabrication ~150 nm of gold layer was deposited over 

SiN membrane, using an e-beam evaporator. 

The Veeco Multimode AFM microscope operated in tapping mode in air was used 

to characterize the thickness of the as-deposited gold layer. Figure 9.2c represents the 
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AFM step-height profile for the determination of the gold film thickness. Figure 9.2d is 

the SEM image of the gold layer deposited on the SiN window (inside dotted white 

square) as shown in Figure 9.2a. In future, arrays of manholes can be drilled on the gold 

coated SiN window (Figure 9.2d). This chip can be used to fabricate the nanohole SPR 

instrument for the detection of biomolecular interactions. The sensitivity of such an 

instrument is better and considerably low sample volume is enough for experiments as 

compared to traditional SPR instruments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.2: (a) Optical image of as-fabricated 325 nm free standing SiN membrane from the membrane 
side (front side). Inset: Optical image for broken SiN membrane. (b) Optical image of SiN membrane from 
the opposite of the membrane side (back side). (c) Step height profile for the AFM image of the ~150 nm 
gold layer over SiN membrane. Inset: AFM image showing the edge of gold layer over SiN surface. The 
edge was patterned using photolithography. (d) SEM image of ~150 nm gold layer deposited SiN 
membrane window (inside dotted white square). 
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Several improvements can still be made to enhance of yield of nanopipette 

experiments. With better surface modification strategies to improve surface charge 

uniformity, to increase receptor density, and to prevent nonspecific binding, I expect that 

the yield and sensitivity of the functionalized nanopipette will be greatly improved. The 

sensitivity of the nanopipette will be further improved if the analyte can be effectively 

delivered to and enriched in the nanopipette tip.    

 

Figure 9.3: Image for the portion of (a) as-fabricated PDMS mold. Inset: portion of mask design using the 
Layouteditor mask drawing software. (b) pattered PDMS layer with micro-channels (inside red dotted 
square). 
 

I have started fabrication of PDMS microfluidic channels using nanofabrication 

techniques. A 325 nm silicon oxide (SiO2) coated (one side) 500 µm thick silicon (Si) 

wafer (3 inches in diameter) was used to spin coat the SU-8 3025 photoresist. A two-step 

programmed spin coating was followed to spin coat the photoresist: Speed 1= 500 rpm, 

Ramp 1= 100 rpm/s, Time 1= 10 s (Program 1), and Speed 2= 1400 rpm, Ramp 2= 300 

rpm/s, Time 2= 30 s (Program 2). The wafer was treated with HDMS primer prior to spin 

coating. The expected thickness of the photoresist was to be 50 µm. The wafer was then 

baked at 95oC for 12 minutes. After allowing the wafer to cool down, it was loaded in the 
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mask aligner to be exposed under UV-light. The laser based mask maker (uPG101, 

Heidelberg Instrument) was used to write patterns on the blank glass mask substrate 

(5300 Å of AZ1518 photoresist coated over 5×5 inch chromium deposited glass). Mask 

patterns were designed using the Layout editor or the AutoCAD software.  

The wafer was then developed using SU-8 developer for 8 minutes followed by 

Isopropyl alcohol (IPA) rinsing, drying with nitrogen gas, and finally hard baking at 

160oC for 5 minutes. This final mold was used as to imprint the patterns on the PDMS 

layer for the fabrication of microfluidic channels. This mold was treated with 

(Tridecafluoro-1, 1, 2, 2-Tetrahydrooctyl) Trichlorosilane in vacuum prior to using to 

fabricate micro channels. This treatment allowed the PDMS later to be peeled off easily 

from the mold. Figure 9.3a depicts a cell phone image of the portion of as-fabricated 

PDMS mold. The inset of Figure 9.3a is the portion of the mask patterns designed using 

Layouteditor. Figure 9.3b represents a cell phone image for the portion of patterned 

PDMS layer (patterns are inside red dotted square). In future, it will be interesting to 

insert the nanopipettes sandwiched in between the two PDMS layers, with micro-

channels. Such a fabrication would be useful to investigate the dynamics of virus like 

particles passing through the nanopores. 
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