53 research outputs found

    Fluticasone furoate: once-daily evening treatment versus twice-daily treatment in moderate asthma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Inhaled corticosteroids are the recommended first-line treatment for asthma but adherence to therapy is suboptimal. The objectives of this study were to compare the efficacy and safety of once-daily (OD) evening and twice-daily (BD) regimens of the novel inhaled corticosteroid fluticasone furoate (FF) in asthma patients.</p> <p>Methods</p> <p>Patients with moderate asthma (age ≥ 12 years; pre-bronchodilator forced expiratory volume in 1 second (FEV<sub>1</sub>) 40-85% predicted; FEV<sub>1 </sub>reversibility of ≥ 12% and ≥ 200 ml) were randomized to FF or fluticasone propionate (FP) regimens in a double-blind, crossover study. Patients were not permitted to have used any ICS for ≥ 8 weeks prior to enrolment and subsequently received doses of FF or FP 200 μg OD, FF or FP 100 μg BD and matching placebo by inhalation for 28 days each. Primary endpoint was Day 28 evening pre-dose (trough) FEV<sub>1</sub>; non-inferiority of FF 200 μg OD and FF 100 μg BD was assessed, as was superiority of all active treatment relative to placebo. Adverse events (AEs) and 24-hour urinary cortisol excretion were assessed.</p> <p>Results</p> <p>The intent-to-treat population comprised 147 (FF) and 43 (FP) patients. On Day 28, pre-dose FEV<sub>1 </sub>showed FF 200 μg OD to be non-inferior (pre-defined limit -110 ml) to FF 100 μg BD (mean treatment difference 11 ml; 95% CI: -35 to +56 ml); all FF and FP regimens were significantly superior to placebo (p ≤ 0.02). AEs were similar to placebo; no serious AEs were reported. Urinary cortisol excretion at Day 28 for FF was lower than placebo (ratios: 200 μg OD, 0.75; 100 μg BD, 0.84; p ≤ 0.02).</p> <p>Conclusions</p> <p>FF 200 μg OD in the evening is an efficacious and well tolerated treatment for asthma patients and is not inferior to the same total BD dose.</p> <p>Trial registration</p> <p>Clinicaltrials.gov; <a href="http://www.clinicaltrials.gov/ct2/show/NCT00766090">NCT00766090</a>.</p

    Acute symptomatic hypoglycaemia mimicking ischaemic stroke on imaging:a systemic review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Acute symptomatic hypoglycaemia is a differential diagnosis in patients presenting with stroke-like neurological impairment, but few textbooks describe the full brain imaging appearances. We systematically reviewed the literature to identify how often hypoglycaemia may mimic ischaemic stroke on imaging, common patterns and relationships with hypoglycaemia severity, duration, clinical outcome and add two new cases.</p> <p>Methods</p> <p>We searched EMBASE and Medline databases for papers reporting imaging in adults with symptomatic hypoglycaemia. We analysed the clinical presentation, outcome, brain imaging findings, duration and severity of hypoglycaemia, time course of lesion appearance, including two new cases.</p> <p>Results</p> <p>We found 42 papers describing computed tomography or magnetic resonance imaging in 65 patients, plus our two cases with symptomatic hypoglycaemia. Imaging abnormalities on computed tomography and magnetic resonance were uni or bilateral, cortical or sub-cortical. Thirteen (20%) mimicked cortical or lacunar stroke. Acute lesions had restricted diffusion on magnetic resonance or low attenuation on computed tomography, plus swelling; older lesions showed focal atrophy or disappeared, as with ischaemic stroke. The association between the depth or duration of hypoglycaemia, the severity or extent of neurological deficit, and the imaging abnormalities, was weak.</p> <p>Conclusion</p> <p>Imaging abnormalities in patients with hypoglycaemia are uncommon but very variable, weakly associated with neurological deficit, and about a fifth mimic acute ischaemic stroke. Blood glucose testing should be routine in all patients with acute neurological impairment and hypoglycaemia should be included in the differential diagnosis of imaging appearances in patients presenting with acute stroke.</p

    Spatially Explicit Analysis of Metal Transfer to Biota: Influence of Soil Contamination and Landscape

    Get PDF
    Concepts and developments for a new field in ecotoxicology, referred to as “landscape ecotoxicology,” were proposed in the 1990s; however, to date, few studies have been developed in this emergent field. In fact, there is a strong interest in developing this area, both for renewing the concepts and tools used in ecotoxicology as well as for responding to practical issues, such as risk assessment. The aim of this study was to investigate the spatial heterogeneity of metal bioaccumulation in animals in order to identify the role of spatially explicit factors, such as landscape as well as total and extractable metal concentrations in soils. Over a smelter-impacted area, we studied the accumulation of trace metals (TMs: Cd, Pb and Zn) in invertebrates (the grove snail Cepaea sp and the glass snail Oxychilus draparnaudi) and vertebrates (the bank vole Myodes glareolus and the greater white-toothed shrew Crocidura russula). Total and CaCl2-extractable concentrations of TMs were measured in soils from woody patches where the animals were captured. TM concentrations in animals exhibited a high spatial heterogeneity. They increased with soil pollution and were better explained by total rather than CaCl2-extractable TM concentrations, except in Cepaea sp. TM levels in animals and their variations along the pollution gradient were modulated by the landscape, and this influence was species and metal specific. Median soil metal concentrations (predicted by universal kriging) were calculated in buffers of increasing size and were related to bioaccumulation. The spatial scale at which TM concentrations in animals and soils showed the strongest correlations varied between metals, species and landscapes. The potential underlying mechanisms of landscape influence (community functioning, behaviour, etc.) are discussed. Present results highlight the need for the further development of landscape ecotoxicology and multi-scale approaches, which would enhance our understanding of pollutant transfer and effects in ecosystems

    Multi-scale Comparison of Stage IV Nexrad (MPE) and Gauge Precipitation Data for Watershed Modeling

    Get PDF
    Proceedings of the 2011 Georgia Water Resources Conference, April 11, 12, and 13, 2011, Athens, Georgia.Watershed hydrologic and fate-and transport models are widely used to forecast water quantity and quality responses to alternative land use and climate change scenarios. The ability of such tools to forecast changes in ecosystem services with reasonable accuracy depends on calibrating reliable simulations of streamflow, which in turn require accurate climatic forcing data. Precipitation is widely acknowledged to be the largest source of uncertainty in watershed modeling. Most watershed models are designed to easily incorporate publicly available precipitation data from rain gauges (e.g., data provided by the National Climatic Data Center), but several additional data products from ground-based radar and satellite-based sensors are now available and can potentially be used to generate more precise, spatially-explicit precipitation estimates. Here, we investigate whether the use of higher-resolution Multisensor Precipitation Estimator (MPE, also known as Stage IV NEXRAD) data can improve the accuracy of daily streamflow simulations using the Soil and Water Assessment Tool (SWAT) watershed hydrology model. Simulated vs. observed streamflow and model calibrations are compared for two Piedmont sub-basins of the Neuse River in North Carolina (21 and 203 km2 watershed area) for an 8 year simulation period (January 1, 2002 to August 31, 2010). MPE simulations led to more accurate simulations of daily streamflow magnitude and frequency measures than gauge data, and differences were more pronounced in the smaller watershed. Compared with USGS-observed flows, MPE simulations produced R2 values of 0.64 and 0.54 for the larger and smaller watershed, respectively, while gauge data produced R2 values of 0.19 in both watersheds. Nash- Sutcliffe Efficiency and other goodness-of-fit indices also showed much better simulations associated with MPE data. Additionally, the temporal structure of MPE simulated streamflows more closely approximated that of the observed streamflows. These results are likely extendable to the Piedmont of the broader southeastern U.S. Ongoing research on this topic investigates additional spatial and temporal scales, as well as additional precipitation data types.Sponsored by: Georgia Environmental Protection Division U.S. Geological Survey, Georgia Water Science Center U.S. Department of Agriculture, Natural Resources Conservation Service Georgia Institute of Technology, Georgia Water Resources Institute The University of Georgia, Water Resources FacultyThis book was published by Warnell School of Forestry and Natural Resources, The University of Georgia, Athens, Georgia 30602-2152. The views and statements advanced in this publication are solely those of the authors and do not represent official views or policies of The University of Georgia, the U.S. Geological Survey, the Georgia Water Research Institute as authorized by the Water Research Institutes Authorization Act of 1990 (P.L. 101-307) or the other conference sponsors

    Polar lithospheric magnetic field from multiple satellite observations

    No full text
    International audienc

    Distribution Energy Control Center Experiment

    No full text
    corecore