26 research outputs found

    Knockdown resistance mutations predict DDT resistance and pyrethroid tolerance in the visceral leishmaniasis vector Phlebotomus argentipes

    Get PDF
    BACKGROUND:Indoor residual spraying (IRS) with DDT has been the primary strategy for control of the visceral leishmaniasis (VL) vector Phlebotomus argentipes in India but efficacy may be compromised by resistance. Synthetic pyrethroids are now being introduced for IRS, but with a shared target site, the para voltage-gated sodium channel (VGSC), mutations affecting both insecticide classes could provide cross-resistance and represent a threat to sustainable IRS-based disease control. METHODOLOGY/PRINCIPAL FINDINGS:A region of the Vgsc gene was sequenced in P. argentipes from the VL hotspot of Bihar, India. Two knockdown resistance (kdr) mutations were detected at codon 1014 (L1014F and L1014S), each common in mosquitoes, but previously unknown in phlebotomines. Both kdr mutations appear largely recessive, but as homozygotes (especially 1014F/F) or as 1014F/S heterozygotes exert a strong effect on DDT resistance, and significantly predict survivorship to class II pyrethroids in short-duration bioassays. The mutations are present at high frequency in wild P. argentipes populations from Bihar, with 1014F significantly more common in higher VL areas. CONCLUSIONS/SIGNIFICANCE:The Vgsc mutations detected appear to be a primary mechanism underlying DDT resistance in P. argentipes and a contributory factor in reduced pyrethroid susceptibility, suggesting a potential impact if P. argentipes are subjected to suboptimal levels of pyrethroid exposure, or additional resistance mechanisms evolve. The assays to detect kdr frequency changes provide a sensitive, high-throughput monitoring tool to detecting spatial and temporal variation in resistance in P. argentipes

    Up-regulation of silent information regulator 2 (Sir2) is associated with amphotericin B resistance in clinical isolates of Leishmania donovani

    No full text
    Objective Silent information regulator 2 (Sir2) is involved in parasite survival and apoptosis. Here, we aimed to explore the involvement of Sir2 in amphotericin B (AmB) resistance mechanism in Leishmania donovani. Methods The expression levels of Sir2, MDR1 and NAD+ biosynthetic pathway enzymes in AmB-resistant and -susceptible parasites were measured and total intracellular NAD+/NADH ratios were compared. Overexpression and knockout constructs of Sir2 were transfected in AmB-resistant and -susceptible parasites. Both resistant and susceptible parasites were inhibited with sirtinol for 4 h. The deacetylase activity of Sir2, the expression level of MDR1, the rate of AmB efflux, concentrations of reactive oxygen species (ROS) and levels of apoptosis were examined in WT, inhibited and transfected parasites, and the AmB susceptibility of the respective parasites was measured by determining the LD50 of AmB. Results Levels of mRNA, protein and NAD+-dependent deacetylase activity of Sir2 were elevated in resistant versus susceptible parasites. Inhibition and/or deletion of Sir2 allele showed a decreased mRNA level of MDR1, lower drug efflux, increased ROS concentration, apoptosis-like phenomenon and decreased LD50 of AmB in resistant parasites. In contrast, Sir2 overexpression in susceptible parasites reversed drug susceptibility producing a resistant phenotype. This was associated with increased LD50 of AmB along with increased expression levels of MDR1, drug efflux and reduced concentrations of ROS, corresponding to decreased apoptosis of resistant to WT sensitive. Conclusions Sir2 plays a critical role in AmB resistance by regulating MDR1, ROS concentration and apoptosis-like phenomena and may be a new resistance marker for visceral leishmaniasis

    Mechanism of Amphotericin B Resistance in Clinical Isolates of Leishmania donovani

    No full text
    The clinical value of amphotericin B, the mainstay therapy for visceral leishmaniasis in sodium antimony gluconatenonresponsive zones of Bihar, India, is now threatened by the emergence of acquired drug resistance, and a comprehensive understanding of the underlying mechanisms is the need of the hour. We have selected an amphotericin B-resistant clinical isolate which demonstrated 8-fold-higher 50% lethal doses (LD50) than an amphotericin B-sensitive strain to explore the mechanism of amphotericin B resistance. Fluorimetric analysis demonstrated lower anisotropy in the motion of the diphenylhexatriene fluorescent probe in the resistant strain, which indicated a higher fluidity of the membrane for the resistant strain than for the sensitive strain. The expression patterns of the two transcripts of S-adenosyl-L-methionine:C-24-�-sterol methyltransferase and the absence of ergosterol, replaced by cholesta-5,7,24-trien-3�-ol in the membrane of the resistant parasite, indicate a decreased amphotericin B affinity, which is evidenced by decreased amphotericin B uptake. The expression level of MDR1 is found to be higher in the resistant strain, suggesting a higher rate of efflux of amphotericin B. The resistant parasite also possesses an upregulated tryparedoxin cascade and a more-reduced intracellular thiol level, which helps in better scavenging of reactive oxygen species produced by amphotericin B. The resistance to amphotericin B was partially reverted by the thiol metabolic pathway and ABC transporter inhibitors. Thus, it can be concluded that altered membrane composition, ATP-binding cassette transporters, and an upregulated thiol metabolic pathway have a role in conferring amphotericin B resistance in clinical isolates of Leishmania donovani

    Chronic Arsenic Exposure and Risk of Post Kala-azar Dermal Leishmaniasis Development in India: A Retrospective Cohort Study.

    No full text
    BACKGROUND:Visceral leishmaniasis (VL), with the squeal of Post-kala-azar dermal leishmaniasis (PKDL), is a global threat for health. Studies have shown sodium stibogluconate (SSG) resistance in VL patients with chronic arsenic exposure. Here, we assessed the association between arsenic exposure and risk of developing PKDL in treated VL patients. METHODS:In this retrospective study, PKDL patients (n = 139), earlier treated with SSG or any other drug during VL, were selected from the study cohort. Trained physicians, unaware of arsenic exposure, interviewed them and collected relevant data in a questionnaire format. All probable water sources were identified around the patient's house and water was collected for evaluation of arsenic concentration. A GIS-based village-level digital database of PKDL cases and arsenic concentration in groundwater was developed and individual point location of PKDL cases were overlaid on an integrated GIS map. We used multivariate logistic regression analysis to assess odds ratios (ORs) for association between arsenic exposure and PKDL development. RESULTS:Out of the 429 water samples tested, 403 had arsenic content of over 10 μg/L, with highest level of 432 μg/L among the seven study villages. Multivariate adjusted ORs for risk of PKDL development in comparison of arsenic concentrations of 10.1-200 μg/L and 200.1-432.0 μg/L were 1.85 (1.13-3.03) and 2.31 (1.39-3.8) respectively. Interestingly, similar results were found for daily dose of arsenic and total arsenic concentration in urine sample of the individual. The multivariate-adjusted OR for comparison of high baseline arsenic exposure to low baseline arsenic exposure of the individuals in the study cohort was 1.66 (95% CI 1.02-2.7; p = 0.04). CONCLUSION:Our findings indicate the need to consider environmental factors, like long time arsenic exposure, as an additional influence on treated VL patients towards risk of PKDL development in Bihar

    Metabolic reconfiguration of the central glucose metabolism: a crucial strategy of Leishmania donovani for its survival during oxidative stress

    No full text
    Understanding the mechanism that allows the intracellular protozoan parasite Leishmania donovani (Ld) to respond to reactive oxygen species (ROS) is of increasing therapeutic importance because of the continuing resistance toward antileishmanial drugs and for determining the illusive survival strategy of these parasites. A shift in primary carbon metabolism is the fastest response to oxidative stress. A 14CO2 evolution study, expression of glucose transporters together with consumption assays, indicated a shift in metabolic flux of the parasites from glycolysis toward pentose phosphate pathway(PPP) when exposed to different oxidants in vitro/ex vivo. Changes in gene expression, protein levels, and enzyme activities all pointed to a metabolic reconfiguration of the central glucose metabolism in response to oxidants. Generation of glucose-6-phosphate dehydrogenase (G6PDH) (∼5-fold) and transaldolase (TAL) (∼4.2-fold) overexpressing Ld cells reaffirmed that lethal doses of ROS were counterbalanced by effective manipulation of NADPH:NADP+ ratio and stringent maintenance of reduced thiol content. The extent of protein carbonylation and accumulation of lipid peroxidized products were also found to be less in overexpressed cell lines. Interestingly, the LD50 of sodiumantimony gluconate (SAG),amphotericin-B (AmB), and miltefosine were significantly high toward overexpressing parasites. Consequently, this study illustrates that Ld strategizes a metabolic reconfiguration for replenishment of NADPH pool to encounter oxidative challenges.—Ghosh, A. K., Sardar, A. H., Mandal, A., Saini, S., Abhishek, K., Kumar, A., Purkait, B., Singh, R., Das, S., Mukhopadhyay, R., Roy, S., Das, P. Metabolic reconfiguration of the central glucose metabolism: a crucial strategy of Leishmania donovani for its survival during oxidative stress

    l-Arginine Uptake by Cationic Amino Acid Transporter Promotes Intra-Macrophage Survival of Leishmania donovani by Enhancing Arginase-Mediated Polyamine Synthesis

    No full text
    The survival of intracellular protozoan parasite, Leishmania donovani, the causative agent of Indian visceral leishmaniasis (VL), depends on the activation status of macrophages. l-Arginine, a semi-essential amino acid plays a crucial regulatory role for activation of macrophages. However, the role of l-arginine transport in VL still remains elusive. In this study, we demonstrated that intra-macrophage survival of L. donovani depends on the availability of extracellular l-arginine. Infection of THP-1-derived macrophage/human monocyte-derived macrophage (hMDM) with Leishmania, resulted in upregulation of l-arginine transport. While investigating the involvement of the transporters, we observed that Leishmania survival was greatly impaired when the transporters were blocked either using inhibitor or siRNA-mediated downregulation. CAT-2 was found to be the main isoform associated with l-arginine transport in L. donovani-infected macrophages. l-arginine availability and its transport regulated the host arginase in Leishmania infection. Arginase and inducible nitric oxide synthase (iNOS) expression were reciprocally regulated when assayed using specific inhibitors and siRNA-mediated downregulation. Interestingly, induction of iNOS expression and nitric oxide production were observed in case of inhibition of arginase in infected macrophages. Furthermore, inhibition of l-arginine transport as well as arginase resulted in decreased polyamine production, limiting parasite survival inside macrophages. l-arginine availability and transport regulated Th1/Th2 cytokine levels in case of Leishmania infection. Upregulation of l-arginine transport, induction of host arginase, and enhanced polyamine production were correlated with increased level of IL-10 and decreased level of IL-12 and TNF-α in L. donovani-infected macrophages. Our findings provide clear evidence for targeting the metabolism of l-arginine and l-arginine-metabolizing enzymes as an important therapeutic and prophylactic strategy to treat VL
    corecore