11 research outputs found

    RSRM 10 percent Scale Model Drilled Hole Plate Tests

    Get PDF
    The RSRM 10% Scaled Model under design will make use of drilled hole liners to provide mass addition along the axial length of the model. The model will have two sets of liners in use at a time. The outer most liner is a flow distribution tube, the purpose of which is to help distribute the flow evenly over each model segment. The inner most liner will simulate the propellant burning surface at a burn time of 80 seconds. This liner will replicate as closely as possible the actual geometry of the full scale RSRM at the 80 second burn time. In order to obtain the correct mass flow rate for the burn time selected, it is necessary to determine the porosity of the holes drilled in each liner and the performance of those holes. The pressure drop across the liners directly effects the uniformity of the flow in the axial direction for a given model section. It is desired to have a pressure drop across the liners which is greater than the axial pressure drop in a given section. However, the pressure drop across the liner also has a bearing on the structural soundness of the model. The performance of the model was determined analytically, but there was some uncertainty as to the value of the discharge coefficient used. This uncertainty was the impetus for these drilled hole plate tests. Experimentally obtaining the discharge coefficients for sample plates of the porosity to be used in the model would increase the fidelity of the model design. These tests were developed in order to provide the required information with the least amount of testing time and hardware

    SRM Internal Flow Test and Computational Fluid Dynamic Analysis

    Get PDF
    During the four year period of performance for NASA contract, NASB-39095, ERC has performed a wide variety of tasks to support the design and continued development of new and existing solid rocket motors and the resolution of operational problems associated with existing solid rocket motor's at NASA MSFC. This report summarizes the support provided to NASA MSFC during the contractual period of performance. The report is divided into three main sections. The first section presents summaries for the major tasks performed. These tasks are grouped into three major categories: full scale motor analysis, subscale motor analysis and cold flow analysis. The second section includes summaries describing the computational fluid dynamics (CFD) tasks performed. The third section, the appendices of the report, presents detailed descriptions of the analysis efforts as well as published papers, memoranda and final reports associated with specific tasks. These appendices are referenced in the summaries. The subsection numbers for the three sections correspond to the same topics for direct cross referencing

    Design of a Subscale Propellant Slag Evaluation Motor Using Two-Phase Fluid Dynamic Analysis

    Get PDF
    Small pressure perturbations in the Space Shuttle Reusable Solid Rocket Motor (RSRM) are caused by the periodic expulsion of molten aluminum oxide slag from a pool that collects in the aft end of the motor around the submerged nozzle nose during the last half of motor operation. It is suspected that some motors produce more slag than others due to differences in aluminum oxide agglomerate particle sizes that may relate to subtle differences in propellant ingredient characteristics such as particle size distributions or processing variations. A subscale motor experiment was designed to determine the effect of propellant ingredient characteristics on the propensity for slag production. An existing 5 inch ballistic test motor was selected as the basic test vehicle. The standard converging/diverging nozzle was replaced with a submerged nose nozzle design to provide a positive trap for the slag that would increase the measured slag weights. Two-phase fluid dynamic analyses were performed to develop a nozzle nose design that maintained similitude in major flow field features with the full scale RSRM. The 5 inch motor was spun about its longitudinal axis to further enhance slag collection and retention. Two-phase flow analysis was used to select an appropriate spin rate along with other considerations, such as avoiding bum rate increases due to radial acceleration effects. Aluminum oxide particle distributions used in the flow analyses were measured in a quench bomb for RSRM type propellants with minor variations in ingredient characteristics. Detailed predictions for slag accumulation weights during motor bum compared favorably with slag weight data taken from defined zones in the subscale motor and nozzle. The use of two-phase flow analysis proved successful in gauging the viability of the experimental program during the planning phase and in guiding the design of the critical submerged nose nozzle

    Modeling and Simulation Techniques for the NASA SLS Service Module Panel Separation Event; from Loosely-Coupled Euler to Fully-Coupled 6-DOF, Time-Accurate, Navier-Stokes Methodologies

    Get PDF
    An aerodynamic database has been generated for use by the Orion Multi-Purpose Crew Vehicle (MPCV) Program to analyze Service Module (SM) panel jettison from the NASA SLS vehicle. The database is a combination of CFD data for the panel aerodynamic coefficients, and MATLAB code written to query the CFD data. The Cart3D inviscid CFD flow solver was used to generate the panel aerodynamic coefficients for static panel orientations and free stream conditions that can occur during the jettison event. The MATLAB code performs the multivariate interpolation to obtain aerodynamic coefficients. The MATLAB code uses input for SM panel parameters and returns the SM panel aerodynamic force and moment coefficients for use with a Six-Degree-of-Freedom (6-DOF) motion solver to model the jettison event. This paper examines the accuracy of the sequential-static database approach by modeling the panel jettison event with a fully-coupled, time-dependent, viscous, moving-body CFD simulation. The fully-coupled simulation is obtained using the Loci/Chem unstructured Navier-Stokes CFD solver. The results show that the fully-coupled approach agrees well with the loosely-coupled database/6-DOF approach, indicating that unsteady effects are minimal for the panel jettison event. These results suggest that the database/6-DOF approach is sufficient. In addition, this paper presents the development of an uncertainty model for use in Monte Carlo analysis of the panel jettison event. Here viscous CFD simulations are obtained with Loci/Chem and compared to the inviscid CFD forces and moments. An uncertainty model based on model-form error and numerical error is presented

    Aerodynamic Tests of the Space Launch System for Database Development

    Get PDF
    The Aerosciences Branch (EV33) at the George C. Marshall Space Flight Center (MSFC) has been responsible for a series of wind tunnel tests on the National Aeronautics and Space Administration's (NASA) Space Launch System (SLS) vehicles. The primary purpose of these tests was to obtain aerodynamic data during the ascent phase and establish databases that can be used by the Guidance, Navigation, and Mission Analysis Branch (EV42) for trajectory simulations. The paper describes the test particulars regarding models and measurements and the facilities used, as well as database preparations

    Development of an Aerodynamic Analysis Method and Database for the SLS Service Module Panel Jettison Event Utilizing Inviscid CFD and MATLAB

    Get PDF
    This paper describes the development, testing, and utilization of an aerodynamic force and moment database for the Space Launch System (SLS) Service Module (SM) panel jettison event. The database is a combination of inviscid Computational Fluid Dynamic (CFD) data and MATLAB code written to query the data at input values of vehicle/SM panel parameters and return the aerodynamic force and moment coefficients of the panels as they are jettisoned from the vehicle. The database encompasses over 5000 CFD simulations with the panels either in the initial stages of separation where they are hinged to the vehicle, in close proximity to the vehicle, or far enough from the vehicle that body interference effects are neglected. A series of viscous CFD check cases were performed to assess the accuracy of the Euler solutions for this class of problem and good agreement was obtained. The ultimate goal of the panel jettison database was to create a tool that could be coupled with any 6-Degree-Of-Freedom (DOF) dynamics model to rapidly predict SM panel separation from the SLS vehicle in a quasi-unsteady manner. Results are presented for panel jettison simulations that utilize the database at various SLS flight conditions. These results compare favorably to an approach that directly couples a 6-DOF model with the Cart3D Euler flow solver and obtains solutions for the panels at exact locations. This paper demonstrates a method of using inviscid CFD simulations coupled with a 6-DOF model that provides adequate fidelity to capture the physics of this complex multiple moving-body panel separation event
    corecore