11,523 research outputs found
A COMPARISON OF LIVEWEIGHT, CARCASS AND LEAN MEAT CRITERIA FOR THE FEEDLOT REPLACEMENT DECISION
Livestock Production/Industries,
Resonator-Aided Single-Atom Detection on a Microfabricated Chip
We use an optical cavity to detect single atoms magnetically trapped on an
atom chip. We implement the detection using both fluorescence into the cavity
and reduction in cavity transmission due to the presence of atoms. In
fluorescence, we register 2.0(2) photon counts per atom, which allows us to
detect single atoms with 75% efficiency in 250 microseconds. In absorption, we
measure transmission attenuation of 3.3(3)% per atom, which allows us to count
small numbers of atoms with a resolution of about 1 atom.Comment: 4.1 pages, 5 figures, and submitted to Physical Review Letter
Decays in Quantum Hierarchical Models
We study the dynamics of a simple model for quantum decay, where a single
state is coupled to a set of discrete states, the pseudo continuum, each
coupled to a real continuum of states. We find that for constant matrix
elements between the single state and the pseudo continuum the decay occurs via
one state in a certain region of the parameters, involving the Dicke and
quantum Zeno effects. When the matrix elements are random several cases are
identified. For a pseudo continuum with small bandwidth there are weakly damped
oscillations in the probability to be in the initial single state. For
intermediate bandwidth one finds mesoscopic fluctuations in the probability
with amplitude inversely proportional to the square root of the volume of the
pseudo continuum space. They last for a long time compared to the non-random
case
Importance of an Astrophysical Perspective for Textbook Relativity
The importance of a teaching a clear definition of the ``observer'' in
special relativity is highlighted using a simple astrophysical example from the
exciting current research area of ``Gamma-Ray Burst'' astrophysics. The example
shows that a source moving relativistically toward a single observer at rest
exhibits a time ``contraction'' rather than a ``dilation'' because the light
travel time between the source and observer decreases with time. Astrophysical
applications of special relativity complement idealized examples with real
applications and very effectively exemplify the role of a finite light travel
time.Comment: 5 pages TeX, European Journal of Physics, in pres
Current noise of a quantum dot p-i-n junction in a photonic crystal
The shot-noise spectrum of a quantum dot p-i-n junction embedded inside a
three-dimensional photonic crystal is investigated. Radiative decay properties
of quantum dot excitons can be obtained from the observation of the current
noise. The characteristic of the photonic band gap is revealed in the current
noise with discontinuous behavior. Applications of such a device in
entanglement generation and emission of single photons are pointed out, and may
be achieved with current technologies.Comment: 4 pages, 3 figures, to appear in Phys. Rev. B (2005
Recent Extreme Ultraviolet Solar Spectra and Spectroheliograms
Extreme ultraviolet solar spectra and spectroheliogram analyse
DC field induced enhancement and inhibition of spontaneous emission in a cavity
We demonstrate how spontaneous emission in a cavity can be controlled by the
application of a dc field. The method is specially suitable for Rydberg atoms.
We present a simple argument for the control of emission.Comment: 3-pages, 2figure. accepted in Phys. Rev.
Schiff moment of the Mercury nucleus and the proton dipole moment
We calculated the contribution of internal nucleon electric dipole moments to
the Schiff moment of Hg. The contribution of the proton electric dipole
moment was obtained via core polarization effects that were treated in the
framework of random phase approximation with effective residual forces. We
derived a new upper bound cm of the proton
electric dipole moment.Comment: 4 pages, 2 figures, RevTex
Surface-induced heating of cold polar molecules
We study the rotational and vibrational heating of diatomic molecules placed
near a surface at finite temperature on the basis of macroscopic quantum
electrodynamics. The internal molecular evolution is governed by transition
rates that depend on both temperature and position. Analytical and numerical
methods are used to investigate the heating of several relevant molecules near
various surfaces. We determine the critical distances at which the surface
itself becomes the dominant source of heating and we investigate the transition
between the long-range and short-range behaviour of the heating rates. A simple
formula is presented that can be used to estimate the surface-induced heating
rates of other molecules of interest. We also consider how the heating depends
on the thickness and composition of the surface.Comment: 17 pages, 7 figure
- …
