6 research outputs found

    Cissus Sicyoides: Pharmacological Mechanisms Involved In The Anti-inflammatory And Antidiarrheal Activities

    Get PDF
    The objective of this study was to evaluate the pharmacological mechanisms involved in anti-inflammatory and antidiarrheal actions of hydroalcoholic extract obtained from the leaves of Cissus sicyoides (HECS). The anti-inflammatory effect was evaluated by oral administration of HECS against acute model of edema induced by xylene, and the mechanisms of action were analysed by involvement of arachidonic acid (AA) and prostaglandin E2 (PGE2). The antidiarrheal effect of HECS was observed and we analyzed the motility and accumulation of intestinal fluid. We also analyzed the antidiarrheal mechanisms of action of HECS by evaluating the role of the opioid receptor, α2 adrenergic receptor, muscarinic receptor, nitric oxide (NO) and PGE2. The oral administration of HECS inhibited the edema induced by xylene and AA and was also able to significantly decrease the levels of PGE2. The extract also exhibited significant anti-diarrheal activity by reducing motility and intestinal fluid accumulation. This extract significantly reduced intestinal transit stimulated by muscarinic agonist and intestinal secretion induced by PGE2. Our data demonstrate that the mechanism of action involved in the anti-inflammatory effect of HECS is related to PGE2. The antidiarrheal effect of this extract may be mediated by inhibition of contraction by acting on the intestinal smoothmuscle and/or intestinal transit. © 2016 by the authors; licensee MDPI, Basel, Switzerland.17

    Effect of cyproterone acetate on alpha1-adrenoceptor subtypes in rat vas deferens

    No full text
    Gonadal hormones regulate the expression of alpha1-adrenoceptor subtypes in several tissues. The present study was carried out to determine whether or not cyproterone acetate, an anti-androgenic agent, regulates the alpha1-adrenoceptor subtypes that mediate contractions of the rat vas deferens in response to noradrenaline. The actions of subtype selective alpha1-antagonists were investigated in vas deferens from control and cyproterone acetate-treated rats (10 mg/day, sc, for 7 days). Prazosin (pA2 ~9.5), phentolamine (pA2 ~8.3) and yohimbine (pA2 ~6.7) presented competitive antagonism consistent with activation of alpha1-adrenoceptors in vas deferens from both control and treated rats. The pA2 values estimated for WB 4101 (~9.5), benoxathian (~9.7), 5-methylurapidil (~8.5), indoramin (~8.7) and BMY 7378 (~6.8) indicate that alpha1A-adrenoceptors are involved in the contractions of the vas deferens from control and cyproterone acetate-treated rats. Treatment of the vas deferens from control rats with the alpha1B/alpha1D-adrenoceptor alkylating agent chloroethylclonidine had no effect on noradrenaline contractions, supporting the involvement of the alpha1A-subtype. However, this agent partially inhibited the contractions of vas deferens from cyproterone acetate-treated rats, suggesting involvement of multiple receptor subtypes. To further investigate this, the actions of WB 4101 and chloroethylclonidine were reevaluated in the vas deferens from rats treated with cyproterone acetate for 14 days. In these organs WB 4101 presented complex antagonism characterized by a Schild plot with a slope different from unity (0.65 ± 0.05). After treatment with chloroethylclonidine, the complex antagonism presented by WB 4101 was converted into classical competitive antagonism, consistent with participation of alpha1A-adrenoceptors as well as alpha1B-adrenoceptors. These results suggest that cyproterone acetate induces plasticity in the alpha1-adrenoceptor subtypes involved in the contractions of the vas deferens

    Functional MRI of neural plasticity and drug effect in the brain

    No full text
    Recent advances in magnetic resonance imaging (MRI) have opened up new perspectives for understanding brain function and its plasticity after damage or even in the process of learning and memory. Using functional MRI (fMRI), reorganization of the cortical representation can be detected after the peripheral nerves deafferentation or digit amputation. To detect the more trivial changes during learning and memory, we established two techniques. One is to use manganese as a contrast agent to detect minute reorganization of hippocampal mossy fiber after training with hidden platform in Morris water maze. The other technique detects the synchrony in fMRI signal among neural areas that represents functional connectivity. We demonstrated the spatial memory network can be visualized in water maze trained animal. Furthermore, we showed that synchrony rather than activity in the brain can be modulated by receptor targeted pharmaceuticals, which indicate a different drug mechanism. The translation of these methods will facilitate our understanding of brain plasticity, early diagnosis of dementia, and evaluation of drug efficacy

    Neuroprotective Role of Hypothermia in Hypoxic-ischemic Brain Injury: Combined Therapies using Estrogen

    No full text
    corecore