30 research outputs found

    Increasing the Inflammatory Competence of Macrophages with IL-6 or with Combination of IL-4 and LPS Restrains the Invasiveness of Pancreatic Cancer Cells

    Get PDF
    Recent studies suggest that pro-inflammatory type M1 macrophages inhibit tumor progression and that anti-inflammatory M2 macrophages enhance it. The aim of this study was to examine the interaction of type M1 and M2 macrophages with pancreatic cancer cells. We studied the migration rate of fluorescein stained pancreatic cancer cells on Matrigel cultured alone or with Granulocyte- Macrophage Colony Stimulating Factor (GM-CSF) differentiated macrophages or with Macrophage Colony Stimulating Factor (M-CSF) differentiated macrophages, skewing the phenotype towards pro- and anti-inflammatory direction, respectively. Macrophage differentiation was assessed with flow cytometry and the cytokine secretion in cell cultures with cytokine array. Both GM-CSF and M-CSF differentiated macrophages increased the migration rate of primary pancreatic adenocarcinoma cell line (MiaPaCa-2) and metastatic cell line (HPAF-II). Stimulation with IL6 or IL4+ LPS reversed the macrophages' increasing effect on the migration rate of Mi-aPaCa-2 completely and partly of HPAF-II. Co-culture with MiaPaCa-2 reduced the inflammatory cytokine secretion of GM-CSF differentiated macrophages. Co-culture of macrophages with pancreatic cancer cells seem to change the inflammatory cytokine profile of GM-CSF differentiated macrophages and this might explain why also GM-CSF differentiated macrophages promoted the invasion. Adding IL6 or IL4+ LPS to the cell culture with MiaPaCa-2 and GM-CSF or M-CSF differentiated macrophages increased the secretion of inflammatory cytokines and this could contribute to the reversion of the macrophage induced increase of cancer cell migration rate.Peer reviewe

    Upregulated but insufficient generation of activated protein C is associated with development of multiorgan failure in severe acute pancreatitis

    Get PDF
    INTRODUCTION: Disturbed protein C (PC) pathway homeostasis might contribute to the development of multiple organ failure (MOF) in acute pancreatitis (AP). We therefore evaluated circulating levels of PC and activated protein C (APC), evaluated monocyte deactivation in AP patients, and determined the relationship of these parameters to MOF. PATIENTS AND METHODS: Thirty-one patients in the intensive care unit were categorized as cases (n = 13, severe AP with MOF) or controls (n = 18, severe AP without MOF). Blood samples were drawn every second day to determine the platelet count, the levels of APC, PC, and D-dimer, and the monocyte HLA-DR expression using flow cytometry. The APC/PC ratio was used to evaluate turnover of PC to APC. RESULTS: During the initial two weeks of hospitalization, low PC levels (<70% of the adult mean) occurred in 92% of cases and 44% of controls (P = 0.008). The minimum APC level was lower in cases than in controls (median 85% versus 97%, P = 0.009). Using 87% as the cut-off value, 8/13 (62%) cases and 3/18 (17%) controls showed reduced APC levels (P = 0.021). A total of 92% of cases and 50% of controls had APC/PC ratios exceeding the upper normal limit (P = 0.013). Plasma samples drawn before MOF showed low PC levels and high APC/PC ratios. HLA-DR-positive monocytes correlated with PC levels (r = 0.38, P < 0.001) and APC levels (r = 0.27, P < 0.001), indicating that the PC pathway was associated with systemic inflammation-triggered immune suppression. CONCLUSION: PC deficiency and decreased APC generation in severe AP probably contributed to a compromised anticoagulant and anti-inflammatory defence. The PC pathway defects were associated with the development of MOF. The data support feasibility of testing the use of APC or PC to improve the clinical outcome in AP

    Enhanced growth of tumors in SPARC null mice is associated with changes in the ECM

    No full text
    SPARC, a 32-kDa glycoprotein, participates in the regulation of morphogenesis and cellular differentiation through its modulation of cell-matrix interactions. Major functions defined for SPARC in vitro are de-adhesion and antiproliferation. In vivo, SPARC is restricted in its expression to remodeling tissues, including pathologies such as cancer. However, the function of endogenous SPARC in tumor growth and progression is not known. Here, we report that implanted tumors grew more rapidly in mice lacking SPARC. We observed that tumors grown in SPARC null mice showed alterations in the production and organization of ECM components and a decrease in the infiltration of macrophages. However, there was no change in the levels of angiogenic growth factors in comparison to tumors grown in wild-type mice, although there was a statistically significant difference in total vascular area. Whereas SPARC did inhibit the growth of tumor cells in vitro, it did not have a demonstrable effect on the proliferation or apoptosis of tumor cells in vivo. These data indicate that host-derived SPARC is important for the appropriate organization of the ECM in response to implanted tumors and highlight the importance of the ECM in regulating tumor growth
    corecore