45 research outputs found
Creatine ingestion augments dietary carbohydrate mediated muscle glycogen supercomposition during the initial 24 hrs of recovery following prolonged exhaustive exercise in humans
Muscle glycogen availability can limit endurance exercise performance. We previously demonstrated 5 days of creatine (Cr) and carbohydrate (CHO) ingestion augmented post-exercise muscle glycogen storage compared to CHO feeding alone in healthy volunteers. Here we aimed to characterise the time-course of this Cr-induced response under more stringent and controlled experimental conditions and identify potential mechanisms underpinning this phenomenon. Fourteen healthy, male volunteers cycled to exhaustion at 70% VO2peak. Muscle biopsies were obtained at rest immediately post-exercise and after 1, 3 and 6 days of recovery, during which Cr or placebo supplements (20g.day-1) were ingested along with a prescribed high CHO diet (37.5 kcal.kg body mass-1.day-1, >80% calories CHO). Oral-glucose tolerance tests (oral-GTT) were performed pre-exercise and after 1, 3 and 6 days of Cr and placebo supplementation. Exercise depleted muscle glycogen content to the same extent in both treatment groups. Creatine supplementation increased muscle total-Cr, free-Cr and phosphocreatine (PCr) content above placebo following 1, 3 and 6 days of supplementation (all P<0.05). Creatine supplementation also increased muscle glycogen content noticeably above placebo after 1 day of supplementation (P<0.05), which was sustained thereafter. This study confirmed dietary Cr augments post-exercise muscle glycogen super-compensation, and demonstrates this occurred during the initial 24 h of post-exercise recovery (when muscle total-Cr had increased by <10%). This marked response ensued without apparent treatment differences in muscle insulin sensitivity (oral-GTT, muscle GLUT4 mRNA), osmotic stress (muscle c-fos and HSP72 mRNA) or muscle cell volume (muscle water content) responses, such that another mechanism must be causative
Interactions of endotoxin, albumin function, albumin binding capacity and oxidative stress in brain-dead organ donors
Eccentric Exercise Activates Novel Transcriptional Regulation of Hypertrophic Signaling Pathways Not Affected by Hormone Changes
Unaccustomed eccentric exercise damages skeletal muscle tissue, activating mechanisms of recovery and remodeling that may be influenced by the female sex hormone 17β-estradiol (E2). Using high density oligonucleotide based microarrays, we screened for differences in mRNA expression caused by E2 and eccentric exercise. After random assignment to 8 days of either placebo (CON) or E2 (EXP), eighteen men performed 150 single-leg eccentric contractions. Muscle biopsies were collected at baseline (BL), following supplementation (PS), +3 hours (3H) and +48 hours (48H) after exercise. Serum E2 concentrations increased significantly with supplementation (P<0.001) but did not affect microarray results. Exercise led to early transcriptional changes in striated muscle activator of Rho signaling (STARS), Rho family GTPase 3 (RND3), mitogen activated protein kinase (MAPK) regulation and the downstream transcription factor FOS. Targeted RT-PCR analysis identified concurrent induction of negative regulators of calcineurin signaling RCAN (P<0.001) and HMOX1 (P = 0.009). Protein contents were elevated for RND3 at 3H (P = 0.02) and FOS at 48H (P<0.05). These findings indicate that early RhoA and NFAT signaling and regulation are altered following exercise for muscle remodeling and repair, but are not affected by E2
Prospektiv- Randomisierte Vergleichs-Studie zweier Unterdrucksysteme zur offenen Abdomenbehandlung
Fiber-type-specific expression of essential (alkali) myosin light chains in human skeletal muscles.
We studied the expression patterns of the essential (alkali) myosin light-chain isoforms in adult human skeletal muscles, using in situ hybridization and single-fiber protein analysis. In analogy to other species, we found that the fiber type-specific expression of essential myosin light chains is regulated via the availability of the respective mRNAs in a given fiber. In contrast to other species, the slow isoform 1sa was only expressed in the most oxidative Type I fibers (Subtype IA) in addition to 1sb. These fibers also contained high levels of carbonic anhydrase III. Within the fibers, the essential myosin light-chain mRNAs were located preferentially in the perinuclear regions and to a lesser extent in the intermyofibrillar spaces, a distribution that excludes cotranslational assembly of these light chains into the myofibrils as the main mechanism. In comparing leg and shoulder muscles, we found less distinct fiber typing in the expression patterns of the essential myosin light chains in the leg muscles than in muscles from the shoulder region. </jats:p
mRNAs of enzymes involved in energy metabolism and mtDNA are increased in endurance-trained athletes
Fast myosin light chain expression in chicken muscles studied by in situ hybridization.
We have studied the fiber type-specific expression of the fast myosin light chain isoforms LC 1f, LC 2f, and LC 3f in adult chicken muscles using in situ hybridization and two-dimensional gel electrophoresis. Type II (fast) fibers contain all three fast myosin light chain mRNAs; Types I and III (slow) fibers lack them. The myosin light chain patterns of two-dimensional gels from microdissected single fibers match their mRNA signals in the in situ hybridizations. The results confirm and extend previous studies on the fiber type-specific distribution of myosin light chains in chicken muscles which used specific antibodies. The quantitative ratios between protein and mRNA content were not the same for all three fast myosin light chains, however. In bulk muscle samples, as well as in single fibers, there was proportionally less LC 3f accumulated for a given mRNA concentration than LC 1f or LC 2f. Moreover, the ratio between LC 3f mRNA and protein was different in samples from muscles, indicating that LC 3f is regulated somewhat differently than LC 1f and LC 2f. In contrast to other in situ hybridization studies on the fiber type-specific localization of muscle protein mRNAs, which reported the RNAs to be located preferentially at the periphery of the fibers, we found all three fast myosin light chain mRNAs quite evenly distributed within the fiber's cross-sections, and also in the few rare fibers which showed hybridization signals several-fold higher than their surrounding counterparts. This could indicate principal differences in the intracellular localization among the mRNAs coding for various myofibrillar protein families. </jats:p
Expression of <i>fos</i> and<i>jun</i> genes in human skeletal muscle after exercise
It is believed that the induction of the fos and jun gene family of transcription factors might be at the origin of genetic events leading to the differential regulation of muscle-specific genes. We have investigated the effect of a 30-min running bout in untrained subjects on the expression of the mRNAs of all members of the fos and jun gene families, including c- fos, fosB, fosBdel, fra-1, and fra-2 as well as c- jun, junB, and junD. While the fos family members were transiently upregulated 10- to 20-fold (an exception being fra-2), the induction of the jun family members was up to 3-fold only. The induction of c- fos could also be demonstrated at the protein level. Both c- fos and c- jun mRNAs were coinduced in muscle fiber nuclei. The induction was not restricted to a particular fiber type, as expected from established muscle fiber recruitment schemes, but followed a “patchy” pattern confined to certain regions of the muscle. The signals leading to the expression of these immediate early genes are therefore unclear. </jats:p
