702 research outputs found

    Catalytic Activity of [Rh(CO) 2

    Full text link

    Graphenes as Efficient Metal-Free Fenton Catalysts

    Get PDF
    [EN] Reduced graphene oxide exhibits high activity as Fenton catalyst with HO. radical generation efficiency over 82 % and turnover nos. of 4540 and 15023 for phenol degrdn. and H2O2 consumption, resp. These values compare favorably with those achieved with transition metals, showing the potential of carbocatalysts for the Fenton reaction.Financial support by Generalidad Valenciana (GV/2013/040 and Prometeo 2012/2013) is gratefully acknowledged. Spanish Ministry of Economy and Competitiveness is also thanked for funding (Severo Ochoa and CTQ2012-32315).Espinosa, JC.; Navalón Oltra, S.; Primo Arnau, AM.; Moral, M.; Fernandez Sanz, J.; Alvaro Rodríguez, MM.; García Gómez, H. (2015). Graphenes as Efficient Metal-Free Fenton Catalysts. Chemistry - A European Journal. 21(34):11966-11971. https://doi.org/10.1002/chem.201501533S11966119712134Stratakis, M., & Garcia, H. (2012). Catalysis by Supported Gold Nanoparticles: Beyond Aerobic Oxidative Processes. Chemical Reviews, 112(8), 4469-4506. doi:10.1021/cr3000785Jana, R., Pathak, T. P., & Sigman, M. S. (2011). Advances in Transition Metal (Pd,Ni,Fe)-Catalyzed Cross-Coupling Reactions Using Alkyl-organometallics as Reaction Partners. Chemical Reviews, 111(3), 1417-1492. doi:10.1021/cr100327pPunniyamurthy, T., Velusamy, S., & Iqbal, J. (2005). Recent Advances in Transition Metal Catalyzed Oxidation of Organic Substrates with Molecular Oxygen. Chemical Reviews, 105(6), 2329-2364. doi:10.1021/cr050523vNavalón, S., Álvaro, M., & García, H. (2013). Polymer- and Ionic Liquid-Containing Palladium: Recoverable Soluble Cross-Coupling Catalysts. ChemCatChem, 5(12), 3460-3480. doi:10.1002/cctc.201300339Dreyer, D. R., & Bielawski, C. W. (2011). Carbocatalysis: Heterogeneous carbons finding utility in synthetic chemistry. Chemical Science, 2(7), 1233. doi:10.1039/c1sc00035gSu, C., & Loh, K. P. (2012). Carbocatalysts: Graphene Oxide and Its Derivatives. Accounts of Chemical Research, 46(10), 2275-2285. doi:10.1021/ar300118vSu, D. S., Perathoner, S., & Centi, G. (2013). Nanocarbons for the Development of Advanced Catalysts. Chemical Reviews, 113(8), 5782-5816. doi:10.1021/cr300367dNavalon, S., Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2014). Carbocatalysis by Graphene-Based Materials. Chemical Reviews, 114(12), 6179-6212. doi:10.1021/cr4007347Kong, X.-K., Chen, C.-L., & Chen, Q.-W. (2014). Doped graphene for metal-free catalysis. Chem. Soc. Rev., 43(8), 2841-2857. doi:10.1039/c3cs60401bDreyer, D. R., Ruoff, R. S., & Bielawski, C. W. (2010). From Conception to Realization: An Historial Account of Graphene and Some Perspectives for Its Future. Angewandte Chemie International Edition, 49(49), 9336-9344. doi:10.1002/anie.201003024Dreyer, D. R., Ruoff, R. S., & Bielawski, C. W. (2010). Ein Konzept und seine Umsetzung: Graphen gestern, heute und morgen. Angewandte Chemie, 122(49), 9524-9532. doi:10.1002/ange.201003024Dreyer, D. R., Park, S., Bielawski, C. W., & Ruoff, R. S. (2010). The chemistry of graphene oxide. Chem. Soc. Rev., 39(1), 228-240. doi:10.1039/b917103gSchaetz, A., Zeltner, M., & Stark, W. J. (2012). Carbon Modifications and Surfaces for Catalytic Organic Transformations. ACS Catalysis, 2(6), 1267-1284. doi:10.1021/cs300014kDreyer, D. R., Jia, H.-P., & Bielawski, C. W. (2010). Graphene Oxide: A Convenient Carbocatalyst for Facilitating Oxidation and Hydration Reactions. Angewandte Chemie, 122(38), 6965-6968. doi:10.1002/ange.201002160Primo, A., Navalón, S., Asiri, A. M., & García, H. (2014). Chitosan-Templated Synthesis of Few-Layers Boron Nitride and its Unforeseen Activity as a Fenton Catalyst. Chemistry - A European Journal, 21(1), 324-330. doi:10.1002/chem.201405469Zhao, Y., Chen, W., Yuan, C., Zhu, Z., & Yan, L. (2012). Hydrogenated Graphene as Metal-free Catalyst for Fenton-like Reaction. Chinese Journal of Chemical Physics, 25(3), 335-338. doi:10.1088/1674-0068/25/03/335-338Pignatello, J. J., Oliveros, E., & MacKay, A. (2006). Advanced Oxidation Processes for Organic Contaminant Destruction Based on the Fenton Reaction and Related Chemistry. Critical Reviews in Environmental Science and Technology, 36(1), 1-84. doi:10.1080/10643380500326564Neyens, E., & Baeyens, J. (2003). A review of classic Fenton’s peroxidation as an advanced oxidation technique. Journal of Hazardous Materials, 98(1-3), 33-50. doi:10.1016/s0304-3894(02)00282-0Pera-Titus, M., Garcı́a-Molina, V., Baños, M. A., Giménez, J., & Esplugas, S. (2004). Degradation of chlorophenols by means of advanced oxidation processes: a general review. Applied Catalysis B: Environmental, 47(4), 219-256. doi:10.1016/j.apcatb.2003.09.010Navalon, S., Alvaro, M., & Garcia, H. (2010). Heterogeneous Fenton catalysts based on clays, silicas and zeolites. Applied Catalysis B: Environmental, 99(1-2), 1-26. doi:10.1016/j.apcatb.2010.07.006Navalon, S., Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2011). Heterogeneous Fenton Catalysts Based on Activated Carbon and Related Materials. ChemSusChem, 4(12), 1712-1730. doi:10.1002/cssc.201100216Dhakshinamoorthy, A., Navalon, S., Alvaro, M., & Garcia, H. (2012). Metal Nanoparticles as Heterogeneous Fenton Catalysts. ChemSusChem, 5(1), 46-64. doi:10.1002/cssc.201100517Dhakshinamoorthy, A., Primo, A., Concepcion, P., Alvaro, M., & Garcia, H. (2013). Doped Graphene as a Metal-Free Carbocatalyst for the Selective Aerobic Oxidation of Benzylic Hydrocarbons, Cyclooctane and Styrene. Chemistry - A European Journal, 19(23), 7547-7554. doi:10.1002/chem.201300653Meng, L. Y., & Park, S. J. (2010). Synthesis of Graphene Nanosheets via Thermal Exfoliation of Pretreated Graphite at Low Temperature. Advanced Materials Research, 123-125, 787-790. doi:10.4028/www.scientific.net/amr.123-125.787Zangmeister, C. D. (2010). Preparation and Evaluation of Graphite Oxide Reduced at 220 °C. Chemistry of Materials, 22(19), 5625-5629. doi:10.1021/cm102005mJin, M., Jeong, H.-K., Kim, T.-H., So, K. P., Cui, Y., Yu, W. J., … Lee, Y. H. (2010). Synthesis and systematic characterization of functionalized graphene sheets generated by thermal exfoliation at low temperature. Journal of Physics D: Applied Physics, 43(27), 275402. doi:10.1088/0022-3727/43/27/275402Primo, A., Atienzar, P., Sanchez, E., Delgado, J. M., & García, H. (2012). From biomass wastes to large-area, high-quality, N-doped graphene: catalyst-free carbonization of chitosan coatings on arbitrary substrates. Chemical Communications, 48(74), 9254. doi:10.1039/c2cc34978gPrimo, A., Sánchez, E., Delgado, J. M., & García, H. (2014). High-yield production of N-doped graphitic platelets by aqueous exfoliation of pyrolyzed chitosan. Carbon, 68, 777-783. doi:10.1016/j.carbon.2013.11.068Konios, D., Stylianakis, M. M., Stratakis, E., & Kymakis, E. (2014). Dispersion behaviour of graphene oxide and reduced graphene oxide. Journal of Colloid and Interface Science, 430, 108-112. doi:10.1016/j.jcis.2014.05.033Dreyer, D. R., Todd, A. D., & Bielawski, C. W. (2014). Harnessing the chemistry of graphene oxide. Chemical Society Reviews, 43(15), 5288. doi:10.1039/c4cs00060aSilva, C. M., Silva, P. L., & Pliego, J. R. (2013). Prediction of the pH-rate profile for dimethyl sulfide oxidation by hydrogen peroxide: The role of elusive H3O2+Ion. International Journal of Quantum Chemistry, 114(8), 501-507. doi:10.1002/qua.24594Sun, J.-H., Sun, S.-P., Wang, G.-L., & Qiao, L.-P. (2007). Degradation of azo dye Amido black 10B in aqueous solution by Fenton oxidation process. Dyes and Pigments, 74(3), 647-652. doi:10.1016/j.dyepig.2006.04.006Bagri, A., Mattevi, C., Acik, M., Chabal, Y. J., Chhowalla, M., & Shenoy, V. B. (2010). Structural evolution during the reduction of chemically derived graphene oxide. Nature Chemistry, 2(7), 581-587. doi:10.1038/nchem.686Choudhary, S., Mungse, H. P., & Khatri, O. P. (2013). Hydrothermal Deoxygenation of Graphene Oxide: Chemical and Structural Evolution. Chemistry - An Asian Journal, 8(9), 2070-2078. doi:10.1002/asia.201300553Navalon, S., Martin, R., Alvaro, M., & Garcia, H. (2010). Gold on Diamond Nanoparticles as a Highly Efficient Fenton Catalyst. Angewandte Chemie International Edition, 49(45), 8403-8407. doi:10.1002/anie.201003216Navalon, S., Martin, R., Alvaro, M., & Garcia, H. (2010). Gold on Diamond Nanoparticles as a Highly Efficient Fenton Catalyst. Angewandte Chemie, 122(45), 8581-8585. doi:10.1002/ange.201003216Martin, R., Navalon, S., Delgado, J. J., Calvino, J. J., Alvaro, M., & Garcia, H. (2011). Influence of the Preparation Procedure on the Catalytic Activity of Gold Supported on Diamond Nanoparticles for Phenol Peroxidation. Chemistry - A European Journal, 17(34), 9494-9502. doi:10.1002/chem.201100955Wu, P., Du, P., Zhang, H., & Cai, C. (2013). Microscopic effects of the bonding configuration of nitrogen-doped graphene on its reactivity toward hydrogen peroxide reduction reaction. Physical Chemistry Chemical Physics, 15(18), 6920. doi:10.1039/c3cp50900aBurkitt, M. J., & Mason, R. P. (1991). Direct evidence for in vivo hydroxyl-radical generation in experimental iron overload: an ESR spin-trapping investigation. Proceedings of the National Academy of Sciences, 88(19), 8440-8444. doi:10.1073/pnas.88.19.8440Navalon, S., Martin, R., Alvaro, M., & Garcia, H. (2011). Sunlight-Assisted Fenton Reaction Catalyzed by Gold Supported on Diamond Nanoparticles as Pretreatment for Biological Degradation of Aqueous Phenol Solutions. ChemSusChem, 4(5), 650-657. doi:10.1002/cssc.201000453Navalon, S., Sempere, D., Alvaro, M., & Garcia, H. (2013). Influence of Hydrogen Annealing on the Photocatalytic Activity of Diamond-Supported Gold Catalysts. ACS Applied Materials & Interfaces, 5(15), 7160-7169. doi:10.1021/am401489nSlobodian, P., Riha, P., Cavallo, P., Barbero, C. A., Benlikaya, R., Cvelbar, U., … Saha, P. (2014). Highly Enhanced Vapor Sensing of Multiwalled Carbon Nanotube Network Sensors byn-Butylamine Functionalization. Journal of Nanomaterials, 2014, 1-8. doi:10.1155/2014/589627Zhang, J., Zou, H., Qing, Q., Yang, Y., Li, Q., Liu, Z., … Du, Z. (2003). Effect of Chemical Oxidation on the Structure of Single-Walled Carbon Nanotubes. The Journal of Physical Chemistry B, 107(16), 3712-3718. doi:10.1021/jp027500uMawhinney, D. B., Naumenko, V., Kuznetsova, A., Yates, J. T., Liu, J., & Smalley, R. E. (2000). Infrared Spectral Evidence for the Etching of Carbon Nanotubes:  Ozone Oxidation at 298 K. Journal of the American Chemical Society, 122(10), 2383-2384. doi:10.1021/ja994094

    Hot or not? Discovery and characterization of a thermostable alditol oxidase from Acidothermus cellulolyticus 11B

    Get PDF
    We describe the discovery, isolation and characterization of a highly thermostable alditol oxidase from Acidothermus cellulolyticus 11B. This protein was identified by searching the genomes of known thermophiles for enzymes homologous to Streptomyces coelicolor A3(2) alditol oxidase (AldO). A gene (sharing 48% protein sequence identity to AldO) was identified, cloned and expressed in Escherichia coli. Following 6xHis tag purification, characterization revealed the protein to be a covalent flavoprotein of 47 kDa with a remarkably similar reactivity and substrate specificity to that of AldO. A steady-state kinetic analysis with a number of different polyol substrates revealed lower catalytic rates but slightly altered substrate specificity when compared to AldO. Thermostability measurements revealed that the novel AldO is a highly thermostable enzyme with an unfolding temperature of 84 °C and an activity half-life at 75 °C of 112 min, prompting the name HotAldO. Inspired by earlier studies, we attempted a straightforward, exploratory approach to improve the thermostability of AldO by replacing residues with high B-factors with corresponding residues from HotAldO. None of these mutations resulted in a more thermostable oxidase; a fact that was corroborated by in silico analysis
    corecore