54 research outputs found

    A Recombination Hotspot in a Schizophrenia-Associated Region of GABRB2

    Get PDF
    Background: Schizophrenia is a major disorder with complex genetic mechanisms. Earlier, population genetic studies revealed the occurrence of strong positive selection in the GABRB2 gene encoding the β2 subunit of GABAA receptors, within a segment of 3,551 bp harboring twenty-nine single nucleotide polymorphisms (SNPs) and containing schizophrenia-associated SNPs and haplotypes. Methodology/Principal Findings:In the present study, the possible occurrence of recombination in this 'S1-S29' segment was assessed. The occurrence of hotspot recombination was indicated by high resolution recombination rate estimation, haplotype diversity, abundance of rare haplotypes, recurrent mutations and torsos in haplotype networks, and experimental haplotyping of somatic and sperm DNA. The sub-segment distribution of relative recombination strength, measured by the ratio of haplotype diversity (Hd) over mutation rate (θ), was indicative of a human specific Alu-Yi6 insertion serving as a central recombining sequence facilitating homologous recombination. Local anomalous DNA conformation attributable to the Alu-Yi6 element, as suggested by enhanced DNase I sensitivity and obstruction to DNA sequencing, could be a contributing factor of the increased sequence diversity. Linkage disequilibrium (LD) analysis yielded prominent low LD points that supported ongoing recombination. LD contrast revealed significant dissimilarity between control and schizophrenic cohorts. Among the large array of inferred haplotypes, H26 and H73 were identified to be protective, and H19 and H81 risk-conferring, toward the development of schizophrenia. Conclusions/Significance: The co-occurrence of hotspot recombination and positive selection in the S1-S29 segment of GABRB2 has provided a plausible contribution to the molecular genetics mechanisms for schizophrenia. The present findings therefore suggest that genome regions characterized by the co-occurrence of positive selection and hotspot recombination, two interacting factors both affecting genetic diversity, merit close scrutiny with respect to the etiology of common complex disorders. © 2010 Ng et al

    AluScan: a method for genome-wide scanning of sequence and structure variations in the human genome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To complement next-generation sequencing technologies, there is a pressing need for efficient pre-sequencing capture methods with reduced costs and DNA requirement. The Alu family of short interspersed nucleotide elements is the most abundant type of transposable elements in the human genome and a recognized source of genome instability. With over one million Alu elements distributed throughout the genome, they are well positioned to facilitate genome-wide sequence amplification and capture of regions likely to harbor genetic variation hotspots of biological relevance.</p> <p>Results</p> <p>Here we report on the use of inter-Alu PCR with an enhanced range of amplicons in conjunction with next-generation sequencing to generate an Alu-anchored scan, or 'AluScan', of DNA sequences between Alu transposons, where Alu consensus sequence-based 'H-type' PCR primers that elongate outward from the head of an Alu element are combined with 'T-type' primers elongating from the poly-A containing tail to achieve huge amplicon range. To illustrate the method, glioma DNA was compared with white blood cell control DNA of the same patient by means of AluScan. The over 10 Mb sequences obtained, derived from more than 8,000 genes spread over all the chromosomes, revealed a highly reproducible capture of genomic sequences enriched in genic sequences and cancer candidate gene regions. Requiring only sub-micrograms of sample DNA, the power of AluScan as a discovery tool for genetic variations was demonstrated by the identification of 357 instances of loss of heterozygosity, 341 somatic indels, 274 somatic SNVs, and seven potential somatic SNV hotspots between control and glioma DNA.</p> <p>Conclusions</p> <p>AluScan, implemented with just a small number of H-type and T-type inter-Alu PCR primers, provides an effective capture of a diversity of genome-wide sequences for analysis. The method, by enabling an examination of gene-enriched regions containing exons, introns, and intergenic sequences with modest capture and sequencing costs, computation workload and DNA sample requirement is particularly well suited for accelerating the discovery of somatic mutations, as well as analysis of disease-predisposing germline polymorphisms, by making possible the comparative genome-wide scanning of DNA sequences from large human cohorts.</p

    Alternative-Splicing in the Exon-10 Region of GABAA Receptor β2 Subunit Gene: Relationships between Novel Isoforms and Psychotic Disorders

    Get PDF
    BACKGROUND: Non-coding single nucleotide polymorphisms (SNPs) in GABRB2, the gene for beta(2)-subunit of gamma-aminobutyric acid type A (GABA(A)) receptor, have been associated with schizophrenia (SCZ) and quantitatively correlated to mRNA expression and alternative splicing. METHODS AND FINDINGS: Expression of the Exon 10 region of GABRB2 from minigene constructs revealed this region to be an "alternative splicing hotspot" that readily gave rise to differently spliced isoforms depending on intron sequences. This led to a search in human brain cDNA libraries, and the discovery of two novel isoforms, beta(2S1) and beta(2S2), bearing variations in the neighborhood of Exon-10. Quantitative real-time PCR analysis of postmortem brain samples showed increased beta(2S1) expression and decreased beta(2S2) expression in both SCZ and bipolar disorder (BPD) compared to controls. Disease-control differences were significantly correlated with SNP rs187269 in BPD males for both beta(2S1) and beta(2S2) expressions, and significantly correlated with SNPs rs2546620 and rs187269 in SCZ males for beta(2S2) expression. Moreover, site-directed mutagenesis indicated that Thr(365), a potential phosphorylation site in Exon-10, played a key role in determining the time profile of the ATP-dependent electrophysiological current run-down. CONCLUSION: This study therefore provided experimental evidence for the importance of non-coding sequences in the Exon-10 region in GABRB2 with respect to beta(2)-subunit splicing diversity and the etiologies of SCZ and BPD

    In Vivo Imaging Reveals Distinct Inflammatory Activity of CNS Microglia versus PNS Macrophages in a Mouse Model for ALS

    Get PDF
    Mutations in the enzyme superoxide dismutase-1 (SOD1) cause hereditary variants of the fatal motor neuronal disease Amyotrophic lateral sclerosis (ALS). Pathophysiology of the disease is non-cell-autonomous: neurotoxicity is derived not only from mutant motor neurons but also from mutant neighbouring non-neuronal cells. In vivo imaging by two-photon laser-scanning microscopy was used to compare the role of microglia/macrophage-related neuroinflammation in the CNS and PNS using ALS-linked transgenic SOD1G93A mice. These mice contained labeled projection neurons and labeled microglia/macrophages. In the affected lateral spinal cord (in contrast to non-affected dorsal columns), different phases of microglia-mediated inflammation were observed: highly reactive microglial cells in preclinical stages (in 60-day-old mice the reaction to axonal transection was ∼180% of control) and morphologically transformed microglia that have lost their function of tissue surveillance and injury-directed response in clinical stages (reaction to axonal transection was lower than 50% of control). Furthermore, unlike CNS microglia, macrophages of the PNS lack any substantial morphological reaction while preclinical degeneration of peripheral motor axons and neuromuscular junctions was observed. We present in vivo evidence for a different inflammatory activity of microglia and macrophages: an aberrant neuroinflammatory response of microglia in the CNS and an apparently mainly neurodegenerative process in the PNS

    Positive Selection within the Schizophrenia-Associated GABA(A) Receptor β(2) Gene

    Get PDF
    The gamma-aminobutyric acid type-A (GABA(A)) receptor plays a major role in inhibitory neurotransmissions. Intronic SNPs and haplotypes in GABRB2, the gene for GABA(A) receptor β(2) subunit, are associated with schizophrenia and correlated with the expression of two alternatively spliced β(2) isoforms. In the present study, using chimpanzee as an ancestral reference, high frequencies were observed for the derived (D) alleles of the four SNPs rs6556547, rs187269, rs1816071 and rs1816072 in GABRB2, suggesting the occurrence of positive selection for these derived alleles. Coalescence-based simulation showed that the population frequency spectra and the frequencies of H56, the haplotype having all four D alleles, significantly deviated from neutral-evolution expectation in various demographic models. Haplotypes containing the derived allele of rs1816072 displayed significantly less diversity compared to haplotypes containing its ancestral allele, further supporting positive selection. The variations in DD-genotype frequencies in five human populations provided a snapshot of the evolutionary history, which suggested that the positive selections of the D alleles are recent and likely ongoing. The divergence between the DD-genotype profiles of schizophrenic and control samples pointed to the schizophrenia-relevance of positive selections, with the schizophrenic samples showing weakened selections compared to the controls. These DD-genotypes were previously found to increase the expression of β(2), especially its long isoform. Electrophysiological analysis showed that this long β(2) isoform favored by the positive selections is more sensitive than the short isoform to the inhibition of GABA(A) receptor function by energy depletion. These findings represent the first demonstration of positive selection in a schizophrenia-associated gene

    Neurovascular unit dysfunction with blood-brain barrier hyperpermeability contributes to major depressive disorder: a review of clinical and experimental evidence

    Get PDF
    About one-third of people with major depressive disorder (MDD) fail at least two antidepressant drug trials at 1 year. Together with clinical and experimental evidence indicating that the pathophysiology of MDD is multifactorial, this observation underscores the importance of elucidating mechanisms beyond monoaminergic dysregulation that can contribute to the genesis and persistence of MDD. Oxidative stress and neuroinflammation are mechanistically linked to the presence of neurovascular dysfunction with blood-brain barrier (BBB) hyperpermeability in selected neurological disorders, such as stroke, epilepsy, multiple sclerosis, traumatic brain injury, and Alzheimer’s disease. In contrast to other major psychiatric disorders, MDD is frequently comorbid with such neurological disorders and constitutes an independent risk factor for morbidity and mortality in disorders characterized by vascular endothelial dysfunction (cardiovascular disease and diabetes mellitus). Oxidative stress and neuroinflammation are implicated in the neurobiology of MDD. More recent evidence links neurovascular dysfunction with BBB hyperpermeability to MDD without neurological comorbidity. We review this emerging literature and present a theoretical integration between these abnormalities to those involving oxidative stress and neuroinflammation in MDD. We discuss our hypothesis that alterations in endothelial nitric oxide levels and endothelial nitric oxide synthase uncoupling are central mechanistic links in this regard. Understanding the contribution of neurovascular dysfunction with BBB hyperpermeability to the pathophysiology of MDD may help to identify novel therapeutic and preventative approaches

    Multiomic prediction of therapeutic targets for human diseases associated with protein phase separation

    No full text
    : The phenomenon of protein phase separation (PPS) underlies a wide range of cellular functions. Correspondingly, the dysregulation of the PPS process has been associated with numerous human diseases. To enable therapeutic interventions based on the regulation of this association, possible targets should be identified. For this purpose, we present an approach that combines the multiomic PandaOmics platform with the FuzDrop method to identify PPS-prone disease-associated proteins. Using this approach, we prioritize candidates with high PandaOmics and FuzDrop scores using a profiling method that accounts for a wide range of parameters relevant for disease mechanism and pharmacological intervention. We validate the differential phase separation behaviors of three predicted Alzheimer's disease targets (MARCKS, CAMKK2, and p62) in two cell models of this disease. Overall, the approach that we present generates a list of possible therapeutic targets for human diseases associated with the dysregulation of the PPS process

    Imprinting in the schizophrenia candidate gene GABRB2 encoding GABA(A) receptor beta(2) subunit

    No full text
    Schizophrenia is a complex genetic disorder, the inheritance pattern of which is likely complicated by epigenetic factors yet to be elucidated. In this study, transmission disequilibrium tests with family trios yielded significant differences between paternal and maternal transmissions of the disease-associated single-nucleotide polymorphism (SNP) rs6556547 and its haplotypes. The minor allele (T) of rs6556547 was paternally undertransmitted to male schizophrenic offsprings, and this parent-of-origin effect strongly suggested that GABRB2 is imprinted. 'Flipping' of allelic expression in heterozygotes of SNP rs2229944 (C/T) in GABRB2 or rs2290732 (G/A) in the neighboring GABRA1 was compatible with imprinting effects on gene expression. Clustering analysis of GABRB2 mRNA expressions suggested that imprinting brought about the observed two-tiered distribution of expression levels in controls with heterozygous genotype at the disease-associated SNP rs1816071 (A/G). The deficit of upper-tiered expressions accounted for the lowered expression levels in the schizophrenic heterozygotes. The occurrence of a two-tiered distribution furnished support for imprinting, and also pointed to the necessity of differentiating between two kinds of heterozygotes of different parental origins in disease association studies on GABRB2. Bisulfite sequencing revealed hypermethylation in the neighborhood of SNP rs1816071, and methylation differences between controls and schizophrenia patients. Notably, the two schizophrenia-associated SNPs rs6556547 and rs1816071 overlapped with a CpG dinucleotide, thereby opening the possibility that CpG methylation status of these sites could have an impact on the risk of schizophrenia. Thus multiple lines of evidence pointed to the occurrence of imprinting in the GABRB2 gene and its possible role in the development of schizophrenia. Molecular Psychiatry (2011) 16, 557-568; doi: 10.1038/mp.2010.47; published online 20 April 201
    corecore