49 research outputs found

    Time-of-day variation on performance measures in repeated-sprint tests: A systematic review.

    Get PDF
    The lack of standardization of methods and procedures have hindered agreement in the literature related to time-of-day effects on repeated sprint performance and needs clarification. Therefore, the aim of the present study was to investigate and systematically review the evidence relating to time-of-day based on performance measures in repeated-sprints. The entire content of PubMed (MEDLINE), Scopus, SPORTDiscusÂź (via EBSCOhost) and Web of Science was searched. Only experimental research studies conducted in male adult participants aged ≄18yrs, published in English before June 2019 were included. Studies assessing repeated-sprints between a minimum of two time-points during the day (morning versus evening) were deemed eligible. The primary search revealed that a total of 10 out of 112 articles were considered eligible and subsequently included. Seven articles were deemed strong and three moderate quality. Eight studies found repeated-sprint performance across the first, first few, or all sprints, to increase in favor of the evening. The magnitude of difference is dependent on the modality and the exercise protocol used. The non-motorized treadmill established an average 3.5–8.5% difference in distance covered, average and peak velocity, and average power, across all sprints in three studies and in peak power in two studies. In cycling, power output differed across all sprints by 6.0% in one study and 8.0% for the first sprint only in five studies. All four studies measuring power decrement values (i.e. rate of fatigue) established differences up to 4.0% and two out of five studies established total work to be significantly higher by 8.0%. Repeated-sprint performance is affected by time-of-day with greater performance in the late/early afternoon. The magnitude is dependent on the variable assessed and the mode of exercise. There is a clear demand for more rigorous investigations which control factors that specifically relate to investigations of time-of-day and are specific to the sport of individuals

    The simple, conventional markers of fatigue - variations in neuromuscular performance, creatine kinase and hydration status in elite soccer players over a season.

    Get PDF
    Background and Purpose: Fixture congestion, game-intensities and limited recovery negatively influence physical/ physiological responses during a competitive soccer season. Therefore, the aim of the investigation was to examine weekly alterations in neuromuscular performance markers, creatine kinase and hydration in elite soccer players throughout a season. Study Design: Longitudinal Observational Study. Methods: Sixteen male professional soccer players competing in the English Football League Championship were assessed over the course of a season. All players provided a urine sample, a blood sample to assess creatine-kinase concentration and performed a countermovement jump test at the start of the season, in-season, pre-and post-match over 38 weeks. Results: Jump height was the most common marker of performance to be significantly reduced in season compared to baseline (-5.4 to -11.3%, P <0.05) with 45.2% of the time-points affected. Measures of FT:CT (-7.5 to -12.4%) and AP (-9.4 to -11.5%), also showed significant deteriorations throughout the season compared to baseline (P<0.05) at several time-points. Max force (MF) significantly increased in-season (+5.1 to 7.0%) in 20% of the observed time-points compared to baseline. CK concentration significantly increased during 19% of the time-points (P<0.05; 62 to 159%). Urine osmolality demonstrated significant differences in-season compared to baseline, but none to levels of dehydration. Conclusion: Monitoring elite soccer players over the course of a competitive season shows alterations in neuromuscular performance and hydration status. These data suggest that assessing counter-movement jump performance may be a useful marker for monitoring responses to training/competition, while creatine-kinase and hydration status may be limited

    Effects of Supplementing Zinc Magnesium Aspartate on Sleep Quality and Submaximal Weightlifting Performance, following Two Consecutive Nights of Partial Sleep Deprivation

    Get PDF
    Purpose: We examined whether supplementation of zinc magnesium aspartate (ZMA), while partially sleep deprived, was beneficial to sleep quality and subsequent morning (07:00 h) submaximal weightlifting. Methods: Using a double-blinded, randomized counterbalanced design, sixteen trained males were recruited and completed six sessions: (i) one repetition max (1 RM) for bench press and back squat; (ii) two familiarisation sessions; (iii) three conditions with 4 h sleep and either: ZMA, placebo (PLA), or NoPill control (NoPill). Submaximal exercise session consisted of three repetitions at 40, 60 and 80% of 1 RM for bench press and back squat. Average power (AP), average velocity (AV), peak velocity (PV), displacement (D) and time-to-peak velocity (tPV) were recorded using MuscleLab linear encoders. Data were analysed using a general linear model with repeated measures and linear correlation. Results: No significant main effect for condition was found for performance values or subjective ratings of fatigue. Main effect for “load” on the bar was found, where AP and tPV values increased with load (p < 0.05). No significant relationship between dose of zinc or magnesium ingested and change in performance for 80% 1 RM power-outputs was found. Conclusion: Supplementation of ZMA for two nights of partial sleep deprivation had no effect on sleep or subsequent morning performance

    In Males with Adequate Dietary Needs Who Present No Sleep Disturbances, Is an Acute Intake of Zinc Magnesium Aspartate, Following Either Two Consecutive Nights of 8 or 4 h of Sleep Deprivation, Beneficial for Sleep and Morning Stroop Interference Performance?

    Get PDF
    PURPOSE: Purpose: We examined whether supplementation of zinc magnesium aspartate (ZMA) in two groups of males, either partially sleep-restricted (4 h) or with habitual sleep (8 h) for 2 nights, was beneficial for sleep and subsequent morning Stroop performance. METHODS: Participants were randomly allocated to two independent groups who either had 4 h (33 males) or 8 h (36 males) sleep for two nights. Using a double-blinded, randomised counterbalanced design, they then completed five sessions, (i) two familiarisation sessions including 7 days of sleep and dietary intake, (ii) three conditions with 4 h or 8 h sleep and either NoPill control (NoPill), placebo (PLAC) or ZMA (ZMA). Sleep was assessed by actimetry and sleep questionnaires, and cognitive performance was assessed by the Stroop test. The data were analysed using a general linear model with repeated measures. RESULTS: A main effect for "sleep" (4 or 8 h) was found, where more opportunity to sleep resulted in better "sleep" metrics (both objective and subjective) as well as better Stroop scores (lower colour-interference and word-interference scores and lower error in words). No main effect for "Pill" was found other than the mood state depression, where subjective ratings for the PLAC group were lower than the other two conditions. Interactions were found in anger, ease to sleep and waking time. CONCLUSION: Having 8 h opportunity to sleep resulted in better "sleep" metrics as well as better Stroop scores compared to 4 h. Supplementation of ZMA for 4 or 8 h for 2 nights had no effect on subsequent morning cognitive performance but reduced sleep or total sleep time by ~0.46 h compared to the other conditions. An interaction was found where sleep time was reduced by ~0.94 h in the ZMA group in the 8 h condition compared to NoPill or PLAC

    Is implementing a post-lunch nap beneficial on evening performance, following two nights partial sleep restriction?

    Get PDF
    We have investigated the effects that partial-sleep-restriction (PSR0, 4-h sleep retiring at 02:30 and waking at 06:30 h for two consecutive nights) have on 07:30 and 17:00 h cognitive and submaximal weightlifting; and whether this performance improves at 17:00 h following a 13:00 h powernap (0, 30 or 60-min). Fifteen resistance-trained males participated in this study. Prior to the experimental protocol, one repetition max (1RM) bench press and back squat, normative habitual sleep and food intake were recorded. Participants were familiarised with the testing protocol, then completed three experimental conditions: (i) PSR with no nap (PSR0); (ii) PSR with a 30-min nap (PSR30) and (iii) PSR with a 60-min nap (PSR60). Conditions were separated by 7 days with trial order counterbalanced. Intra-aural temperature, Profile of Mood Scores, word-colour interference, alertness and tiredness values were measured at 07:30, 11:00, 14:00, 17:00 h on the day of exercise protocol. Following final temperature measurements at 07:30 h and 17:00 h, participants completed a 5-min active warm-up before performing three repetitions of left and right-hand grip strength, followed by three repetitions at each incremental load (40, 60 and 80% of 1RM) for bench press and back squat, with a 5-min recovery between each repetition. A linear encoder was attached perpendicular to the bar used for the exercises. Average power (AP), average velocity (AV), peak velocity (PV), displacement (D) and time-to-peak velocity (tPV) were measured (MuscleLab software) during the concentric phase of the movements. Data were analysed using general linear models with repeated measures. The main findings were that implementing a nap at 13:00 h had no effect on measures of strength (grip, bench press or back squat). There was a main effect for time of day with greatest performance at 17:00 h for measures of strength. In addition to a significant effect for “load” on the bar for bench press and back squat where AP, AV, PV, D values were greatest at 40% (P < 0.05) and decreased with increased load, whereas tPV and RPE values increased with load; despite this no interaction of “load and condition” were present. A post lunch nap of 30- and 60-minute durations improved mood state, with feelings of alertness, vigour and happiness highest at 17:00 h, in contrast to confusion, tiredness and fatigue (P < 0.05), which were greater in the morning (07:30 h). The word-colour interference test, used as an indicator of cognitive function, reported significant main effect for condition, with the highest total test score in PSR60 condition (P = 0.015). In summary, unlike strength measures the implementation of a 30 or 60-minute nap improved cognitive function when in a partially sleep restricted state, compared to no nap

    The validity of an updated metabolic power algorithm based upon Di Prampero’s theoretical model in Elite soccer players

    Get PDF
    The aim of this study was to update the metabolic power (MP) algorithm (P.VO2, W·kg−1) related to the kinematics data (PGPS, W·kg−1) in a soccer-specific performance model. For this aim, seventeen professional (Serie A) male soccer players (.VO2max 55.7 ± 3.4 mL·min−1·kg−1) performed a 6 min run at 10.29 km·h−1 to determine linear-running energy cost (Cr). On a separate day, thirteen also performed an 8 min soccer-specific intermittent exercise protocol. For both procedures, a portable Cosmed K4b2 gas-analyzer and GPS (10 Hz) was used to assess the energy cost above resting (C). From this aim, the MP was estimated through a newly derived C equation (PGPSn) and compared with both the commonly used (PGPSo) equation and direct measurement (P.VO2). Both PGPSn and PGPSo correlated with P.VO2 (r = 0.66, p < 0.05). Estimates of fixed bias were negligible (PGPSn = −0.80 W·kg−1 and PGPSo = −1.59 W·kg−1), and the bounds of the 95% CIs show that they were not statistically significant from 0. Proportional bias estimates were negligible (absolute differences from one being 0.03 W·kg−1 for PGPSn and 0.01 W·kg−1 for PGPSo) and not statistically significant as both 95% CIs span 1. All variables were distributed around the line of unity and resulted in an under-or overestimation of PGPSn, while PGPSo routinely underestimated MP across ranges. Repeated-measures ANOVA showed differences over MP conditions (F1,38 = 16.929 and p < 0.001). Following Bonferroni post hoc test significant differences regarding the MP between PGPSo and P.VO2 /PGPSn (p < 0.001) were established, while no differences were found between P.VO2 and PGPSn (p = 0.853). The new approach showed it can help the coaches and the soccer trainers to better monitor external training load during the training seasons.© 2020 by the authors. Licensee MDPI, Basel, Switzerland

    Effects of an Acute Dose of Zinc Monomethionine Asparate and Magnesium Asparate (ZMA) on Subsequent Sleep and Next-Day Morning Performance (Countermovement Jumps, Repeated Sprints and Stroop Test)

    Get PDF
    The goal of the present study was to determine whether an acute dose of a zinc-containing nutritional supplement (ZMA) has any effects on sleep and morning performance in recreationally trained males. Nineteen males participated in a repeated-measures within-subjects study to assess objective and subjective measures of sleep, completed counter-movement jumps (CMJ) and repeated sprint morning performance (RSP). Three days of baseline food intake showed no major deficiencies of zinc, magnesium or vitamin B6 for all participants (11.9 ± 3.4, 395 ± 103 and 2.7 ± 0.9 mg.day−1, respectively). Sleep (22:30–06:30 h) was assessed via actimetry, and either a control (no tablets, NoPill), dextrose placebo (PLAC) or ZMA was ingested 30–60 min before retiring to bed for two nights. The participants undertook the three conditions (NoPill, PLAC or ZMA) administered in a counterbalanced order. The data were analyzed using general linear models with repeated measures. In healthy active males who consume diets of adequate micronutrients, sleep normally and maintain good sleep hygiene (time to bed and wake times), ZMA supplementation had no beneficial effect on RSP or performance in the Stroop test (p > 0.05) but did improve CMJ height (p 0.05). Supplementation of ZMA for two nights had no effect on sleep, RSP or cognitive function. The NoPill condition elucidated the effects of the intervention under investigation

    Post-activation Potentiation: Effect of Recovery Duration and Gender on Countermovement Jump, Agility, and Linear Speed in Team-Sport Athletes

    Get PDF
    Background: Studies assessing post-activation potentiation (PAP) responses comparing male and female athletes are conflicting. Objectives: This study investigated whether differences exist in the duration for optimal post-preload stimulus measures on performance in male and female team sport athletes. Methods: Twenty-four participants (12 males and 12 females) participated in the study. Two familiarization sessions were conducted with each participant. Then, three experimental conditions were implemented, incorporating a standardized warm-up, followed by back squats (conditioning exercises) and varying passive recovery times of 4 min (PAP4), 8 min (PAP8), or 12 min (PAP12). Following the recovery, players performed three physical performance measures related to team sports: A countermovement jump, a modified agility t-test, and a 20-m linear sprint. The significance level was set at P < 0.05. Results: All performance measures were significantly greater in PAP12 than in PAP4 and PAP8 conditions in both males (1.50 to 2.95%) and females (1.09 to 5.79%) (P < 0.05). The PAP12 condition also had significantly lower values for HR (3.18 to 5.15 beats.min-1; P < 0.0005) and ratings of perceived exertion (RPE) (0.63 to 1.02; P < 0.05) than PAP8 and PAP4. Males performed better on all the performance tests (19.33 to 26.34%) compared to their female counterparts (P < 0.0005). Conclusions: A pre-load stimulus consisting of one set of 5 repetitions of back squat at 85% one-repetition maximum can elicit a PAP response. A 12-min passive rest after the pre-load stimulus was most beneficial in improving physical performance measures in both male and female team-sport athletes

    Sex differences in shoulder performance fatiguability are affected by arm position, dominance and muscle group

    Get PDF
    Background: Injury prevalence data, muscle strength, and fatiguability differ between males and females. In addition, arm spatial orientation affects muscle activation and strength of the shoulder muscles. Nevertheless, little research has been conducted in relation to the shoulder rotator muscles comparing men and women. Therefore, the main aim of of this study was to perform a comparative investigation between two arm spatial orientations (45° and 90° of abduction in the frontal plane) during a fatigue assessment of the internal rotator (IR) and external rotator (ER) shoulder muscles. Secondly, the interaction between sex and dominance with muscular performance was assessed. Methods: Forty healthy sedentary participants, 20 males and 20 females took part in this study. Participants performed a fatigue resistance protocol consisting of 30 consecutive maximal concentric contractions of the IR and ER shoulder muscles in a supine position at a speed of 180°/s. The upper limb was abducted to an angle of 45° or 90° in the frontal plane and each participant was tested on the dominant and nom-dominant side, counterbalanced in order of administration. Performance measures of Induced Fatigue (IF; %), Cumulated Performance (C.Perf; J) and Best Repetition (BR; J) were calculated and used for analysis. IF represents the % difference between the amount of work done over the last 3 and first 3 repetitions, BR represents the largest amount of work done during a single contraction, and C.Perf represents the total amount of work done during all repetitions. Results: Muscle group was the only factor to display significant variation when not considering other factors, with higher values for C.Perf (mean difference = 353.59 J, P < 0.0005), BR (mean difference = 14.21 J, P < 0.0005) and IF (mean difference = 3.65%, P = 0.0046). There was a significant difference between both angles, with higher values observed at 90° compared to 45° of abduction for C.Perf by ~ 7.5% (mean difference = 75 to 152 J) and ~ 10.8% (mean difference = 5.1 to 9.4 J) for BR in the ER, in males and females respectively (P < 0.0005). The dominant arm was significantly stronger than the non-dominant arm for C.Perf by 11.7% (mean difference = 111.58 J) for males and by 18% (mean difference = 82.77 J) for females in the ER at 45° abduction. At 90° abduction, only females were stronger in the dominant arm by 18.8% (mean difference = 88.17 J). Values for BR ranged from 9.2 to 21.8% depending on the abduction angle and sex of the athlete (mean difference = 2.44 – 4.85 J). Males were significantly stronger than females by 48.8 to 50.7% for values of C.Perf and BR in both the IR and ER (P < 0.0005). There was a significant difference between the ER and IR muscles, with significantly higher values observed for the IR in C.Perf (mean difference = 331.74 J) by 30.0% and in BR (mean difference = 13.31 J) by 26.64%. Discussion: Differences in shoulder performance fatiguability between sexes are affected by arm position, arm dominance and muscle groups. In agreement with the literature, performance values in males were approximately 50% higher than in females. However, the amount of IF was no different between both sexes. Based on findings in literature, it could be suggested that this is due to differences between males and females in motor control and/or coordination strategies during repetitive tasks. In addition, we also observed the IR muscles to be significantly stronger than the ER muscles. It has long been established in literature that these observations are due to the muscle-size differences between both muscle groups, where the IR muscles can produce a larger amount of force due to the larger cross-sectional area. Results of our study found similar ER:IR ratios compared to previous reports. Conclusion: Therefore, these findings are useful for clinicians when monitoring rehabilitation programs in sedentary individuals following shoulder injuries

    Diurnal variation in variables related to cognitive performance: a systematic review

    Get PDF
    Purpose: The aim of this review was to assess current evidence regarding changes in cognitive function according to time-of-day (TOD) and assess the key components of research design related to manuscripts of chronobiological nature. Methods: An English-language literature search revealed 523 articles through primary database searches, and 1868 via organization searches/citation searching. The inclusion criteria were met by eleven articles which were included in the review. The inclusion criteria set were healthy adult males, a minimum of two timepoints including morning and evening, cognitive measures of performance, and peer-reviewed academic paper. Results: It was established that cognitive performance varies with TOD and the degree of difference is highly dependent on the type of cognitive task with differences ranging from 9.0 to 34.2% for reaction time, 7.3% for alertness, and 7.8 to 40.3% for attention. The type of cognitive function was a determining factor as to whether the performance was better in the morning, evening, or afternoon. Conclusion: Although some studies did not establish TOD differences, reaction time and levels of accuracy were highest in the evening. This implies that cognitive processes are complex, and existing research is contradictory. Some studies or cognitive variables did not show any measurable TOD effects, which may be due to differences in methodology, subjects involved, testing protocols, and confounding factors. No studies met all requirements related to chronobiological research, highlighting the issues around methodology. Therefore, future research must use a rigorous, approach, minimizing confounding factors that are specific to examinations of TOD
    corecore