506 research outputs found

    Consistent discretizations: the Gowdy spacetimes

    Get PDF
    We apply the consistent discretization scheme to general relativity particularized to the Gowdy space-times. This is the first time the framework has been applied in detail in a non-linear generally-covariant gravitational situation with local degrees of freedom. We show that the scheme can be correctly used to numerically evolve the space-times. We show that the resulting numerical schemes are convergent and preserve approximately the constraints as expected.Comment: 10 pages, 8 figure

    Consistent discretization and loop quantum geometry

    Get PDF
    We apply the ``consistent discretization'' approach to general relativity leaving the spatial slices continuous. The resulting theory is free of the diffeomorphism and Hamiltonian constraints, but one can impose the diffeomorphism constraint to reduce its space of solutions and the constraint is preserved exactly under the discrete evolution. One ends up with a theory that has as physical space what is usually considered the kinematical space of loop quantum geometry, given by diffeomorphism invariant spin networks endowed with appropriate rigorously defined diffeomorphism invariant measures and inner products. The dynamics can be implemented as a unitary transformation and the problem of time explicitly solved or at least reduced to as a numerical problem. We exhibit the technique explicitly in 2+1 dimensional gravity.Comment: 4 pages, Revtex, no figure

    17 ways to say yes:Toward nuanced tone of voice in AAC and speech technology

    Get PDF
    People with complex communication needs who use speech-generating devices have very little expressive control over their tone of voice. Despite its importance in human interaction, the issue of tone of voice remains all but absent from AAC research and development however. In this paper, we describe three interdisciplinary projects, past, present and future: The critical design collection Six Speaking Chairs has provoked deeper discussion and inspired a social model of tone of voice; the speculative concept Speech Hedge illustrates challenges and opportunities in designing more expressive user interfaces; the pilot project Tonetable could enable participatory research and seed a research network around tone of voice. We speculate that more radical interactions might expand frontiers of AAC and disrupt speech technology as a whole

    Fundamental decoherence from relational time in discrete quantum gravity: Galilean covariance

    Get PDF
    We have recently argued that if one introduces a relational time in quantum mechanics and quantum gravity, the resulting quantum theory is such that pure states evolve into mixed states. The rate at which states decohere depends on the energy of the states. There is therefore the question of how this can be reconciled with Galilean invariance. More generally, since the relational description is based on objects that are not Dirac observables, the issue of covariance is of importance in the formalism as a whole. In this note we work out an explicit example of a totally constrained, generally covariant system of non-relativistic particles that shows that the formula for the relational conditional probability is a Galilean scalar and therefore the decoherence rate is invariant.Comment: 10 pages, RevTe

    Dirac-like approach for consistent discretizations of classical constrained theories

    Get PDF
    We analyze the canonical treatment of classical constrained mechanical systems formulated with a discrete time. We prove that under very general conditions, it is possible to introduce nonsingular canonical transformations that preserve the constraint surface and the Poisson or Dirac bracket structure. The conditions for the preservation of the constraints are more stringent than in the continuous case and as a consequence some of the continuum constraints become second class upon discretization and need to be solved by fixing their associated Lagrange multipliers. The gauge invariance of the discrete theory is encoded in a set of arbitrary functions that appear in the generating function of the evolution equations. The resulting scheme is general enough to accommodate the treatment of field theories on the lattice. This paper attempts to clarify and put on sounder footing a discretization technique that has already been used to treat a variety of systems, including Yang--Mills theories, BF-theory and general relativity on the lattice.Comment: 11 pages, RevTe

    Uniform discretizations: a new approach for the quantization of totally constrained systems

    Get PDF
    We discuss in detail the uniform discretization approach to the quantization of totally constrained theories. This approach allows to construct the continuum theory of interest as a well defined, controlled, limit of well behaved discrete theories. We work out several finite dimensional examples that exhibit behaviors expected to be of importance in the quantization of gravity. We also work out the case of BF theory. At the time of quantization, one can take two points of view. The technique can be used to define, upon taking the continuum limit, the space of physical states of the continuum constrained theory of interest. In particular we show in models that it agrees with the group averaging procedure when the latter exists. The technique can also be used to compute, at the discrete level, conditional probabilities and the introduction of a relational time. Upon taking the continuum limit one can show that one reproduces results obtained by the use of evolving constants, and therefore recover all physical predictions of the continuum theory. This second point of view can also be used as a paradigm to deal with cases where the continuum limit does not exist. There one would have discrete theories that at least at certain scales reproduce the semiclassical properties of the theory of interest. In this way the approach can be viewed as a generalization of the Dirac quantization procedure that can handle situations where the latter fails.Comment: 17 pages, Revtex, no figures, published versio

    Canonical quantization of general relativity in discrete space-times

    Get PDF
    It has long been recognized that lattice gauge theory formulations, when applied to general relativity, conflict with the invariance of the theory under diffeomorphisms. Additionally, the traditional lattice field theory approach consists in fixing the gauge in a Euclidean action, which does not appear appropriate for general relativity. We analyze discrete lattice general relativity and develop a canonical formalism that allows to treat constrained theories in Lorentzian signature space-times. The presence of the lattice introduces a ``dynamical gauge'' fixing that makes the quantization of the theories conceptually clear, albeit computationally involved. Among other issues the problem of a consistent algebra of constraints is automatically solved in our approach. The approach works successfully in other field theories as well, including topological theories like BF theory. We discuss a simple cosmological application that exhibits the quantum elimination of the singularity at the big bang.Comment: 4 pages, RevTeX, no figures, final version to appear in Physical Review Letter

    Perturbative evolution of conformally flat initial data for a single boosted black hole

    Get PDF
    The conformally flat families of initial data typically used in numerical relativity to represent boosted black holes are not those of a boosted slice of the Schwarzschild spacetime. If such data are used for each black hole in a collision, the emitted radiation will be partially due to the ``relaxation'' of the individual holes to ``boosted Schwarzschild'' form. We attempt to compute this radiation by treating the geometry for a single boosted conformally flat hole as a perturbation of a Schwarzschild black hole, which requires the use of second order perturbation theory. In this we attempt to mimic a previous calculation we did for the conformally flat initial data for spinning holes. We find that the boosted black hole case presents additional subtleties, and although one can evolve perturbatively and compute radiated energies, it is much less clear than in the spinning case how useful for the study of collisions are the radiation estimates for the ``spurious energy'' in each hole. In addition to this we draw some lessons on which frame of reference appears as more favorable for computing black hole collisions in the close limit approximation.Comment: 11 pages, RevTex, 4 figures included with psfig, to appear in PR
    • …
    corecore