10 research outputs found

    Transcriptional profiling unveils molecular subgroups of adaptive and maladaptive right ventricular remodeling in pulmonary hypertension

    Get PDF
    Right ventricular (RV) function is critical to prognosis in all forms of pulmonary hypertension. Here we perform molecular phenotyping of RV remodeling by transcriptome analysis of RV tissue obtained from 40 individuals, and two animal models of RV dysfunction of both sexes. Our unsupervised clustering analysis identified ‘early’ and ‘late’ subgroups within compensated and decompensated states, characterized by the expression of distinct signaling pathways, while fatty acid metabolism and estrogen response appeared to underlie sex-specific differences in RV adaptation. The circulating levels of several extracellular matrix proteins deregulated in decompensated RV subgroups were assessed in two independent cohorts of individuals with pulmonary arterial hypertension, revealing that NID1, C1QTNF1 and CRTAC1 predicted the development of a maladaptive RV state, as defined by magnetic resonance imaging parameters, and were associated with worse clinical outcomes. Our study provides a resource for subphenotyping RV states, identifying state-specific biomarkers, and potential therapeutic targets for RV dysfunction

    Partial reversal of experimental pulmonary hypertension by phosphodiesterase-3/4 inhibition

    No full text
    Phosphodiesterase (PDE) inhibitors are currently under investigation for the therapy of pulmonary hypertension. The present study was designed to investigate chronic effects of oral pumafentrine, a mixed selective PDE-3/4 inhibitor, in monocrotaline (MCT)-induced pulmonary hypertension in rats. Treatment with pumafentrine (10 mg.kg(-1) daily) from week 4 to 6 after a single injection of MCT (60 mg.kg(-1)) partially reversed pulmonary hypertension and right heart hypertrophy in rats. In addition, small pulmonary arterial muscularisation, media hypertrophy and decrease in lumen area were largely reversed. Inhibition of smooth muscle proliferation under pumafentrine was demonstrated in vivo as was a pro-apoptotic effect of pumafentrine on vascular cells. Moreover, pumafentrine dose-dependently increased cyclic adenosine monophosphate levels and inhibited proliferation of cultured pulmonary arterial smooth muscle cells. In conclusion, oral pumafentrine partially reverses monocrotaline-induced pulmonary hypertension, lung vascular remodelling and right heart hypertrophy in rats

    Phosphodiesterase 6 subunits are expressed and altered in idiopathic pulmonary fibrosis.

    Get PDF
    BACKGROUND: Idiopathic Pulmonary Fibrosis (IPF) is an unresolved clinical issue. Phosphodiesterases (PDEs) are known therapeutic targets for various proliferative lung diseases. Lung PDE6 expression and function has received little or no attention. The present study aimed to characterize (i) PDE6 subunits expression in human lung, (ii) PDE6 subunits expression and alteration in IPF and (iii) functionality of the specific PDE6D subunit in alveolar epithelial cells (AECs). METHODOLOGY/PRINCIPAL FINDINGS: PDE6 subunits expression in transplant donor (n = 6) and IPF (n = 6) lungs was demonstrated by real-time quantitative (q)RT-PCR and immunoblotting analysis. PDE6D mRNA and protein levels and PDE6G/H protein levels were significantly down-regulated in the IPF lungs. Immunohistochemical analysis showed alveolar epithelial localization of the PDE6 subunits. This was confirmed by qRT-PCR from human primary alveolar type (AT)II cells, demonstrating the down-regulation pattern of PDE6D in IPF-derived ATII cells. In vitro, PDE6D protein depletion was provoked by transforming growth factor (TGF)-β1 in A549 AECs. PDE6D siRNA-mediated knockdown and an ectopic expression of PDE6D modified the proliferation rate of A549 AECs. These effects were mediated by increased intracellular cGMP levels and decreased ERK phosphorylation. CONCLUSIONS/SIGNIFICANCE: Collectively, we report previously unrecognized PDE6 expression in human lungs, significant alterations of the PDE6D and PDE6G/H subunits in IPF lungs and characterize the functional role of PDE6D in AEC proliferation

    Correction to: Phosphodiesterase 6 subunits are expressed and altered in idiopathic pulmonary fibrosis.

    No full text
    The original version of the article [1] unfortunately contained a mistake in Fig. 7. In this a western blot image (p38a/b, panel E in Fig. 7) from the 24 h PDE6D siRNA transfected group has been mistakenly duplicated from the 12 h PDE6D siRNA transfected group shown in Fig. 7D. We are deeply sorry for this mistake and would like to replace it with a blot from 24 h PDE6D siRNA transfected group. This change will not affect the results, discussion, and the general message of the manuscript. It has been corrected in this correction. The correct version of Fig. 7 is in this erratum

    FoxO3 an important player in fibrogenesis and therapeutic target for idiopathic pulmonary fibrosis.

    No full text
    Published under the terms of the CC BY 4.0 license Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal parenchymal lung disease with limited therapeutic options, with fibroblast-to-myofibroblast transdifferentiation and hyperproliferation playing a major role. Investigating ex vivo-cultured (myo)fibroblasts from human IPF lungs as well as fibroblasts isolated from bleomycin-challenged mice, Forkhead box O3 (FoxO3) transcription factor was found to be less expressed, hyperphosphorylated, and nuclear-excluded relative to non-diseased controls. Downregulation and/or hyperphosphorylation of FoxO3 was reproduced by exposure of normal human lung fibroblasts to various pro-fibrotic growth factors and cytokines (FCS, PDGF, IGF1, TGF-β1). Moreover, selective knockdown of FoxO3 in the normal human lung fibroblasts reproduced the transdifferentiation and hyperproliferation phenotype. Importantly, mice with global- (Foxo3 −/− ) or fibroblast-specific (Foxo3 f.b −/− ) FoxO3 knockout displayed enhanced susceptibility to bleomycin challenge, with augmented fibrosis, loss of lung function, and increased mortality. Activation of FoxO3 with UCN-01, a staurosporine derivative currently investigated in clinical cancer trials, reverted the IPF myofibroblast phenotype in vitro and blocked the bleomycin-induced lung fibrosis in vivo. These studies implicate FoxO3 as a critical integrator of pro-fibrotic signaling in lung fibrosis and pharmacological reconstitution of FoxO3 as a novel treatment strategy

    Long noncoding RNA lISPR1 is required for S1P signaling and endothelial cell function

    No full text
    Sphingosine-1-Phosphate (S1P) is a potent signaling lipid. The effects of S1P are mediated by the five S1P receptors (S1PR). In the endothelium S1PR1 is the predominant receptor and thus S1PR1 abundance limits S1P signaling. Recently, lncRNAs were identified as a novel class of molecules regulating gene expression. Interestingly, the lncRNA NONHSAT004848 (LISPR1, Long intergenic noncoding RNA antisense to S1PR1), is closely positioned to the S1P1 receptors gene and in part shares its promoter region. We hypothesize that LISPR1 controls endothelial S1PR1 expression and thus S1P-induced signaling in endothelial cells. In vitro transcription and translation as well as coding potential assessment showed that LISPR1 is indeed noncoding. LISPR1 was localized in both cytoplasm and nucleus and harbored a PolyA tail at the 3'end. In human umbilical vein endothelial cells, as well as human lung tissue, qRT-PCR and RNA-Seq revealed high expression of LISPR1. S1PR1 and LISPR1 were downregulated in human pulmonary diseases such as COPD. LISPR1 but also S1PR1 were induced by inflammation, shear stress and statins. Knockdown of LISPR1 attenuated endothelial S1P-induced migration and spheroid outgrowth of endothelial cells. LISPR1 knockdown decreased S1PR1 expression, which was paralleled by an increase of the binding of the transcriptional repressor ZNF354C to the S1PR1 promoter and a reduction of the recruitment of RNA Polymerase II to the S1PR1 5'end. This resulted in attenuated S1PR1 expression and attenuated S1P downstream signaling. Collectively, the disease relevant lncRNA LISPR1 acts as a novel regulatory unit important for S1PR1 expression and endothelial cell function

    Interferon regulatory factor 9 promotes lung cancer progression via regulation of versican.

    No full text
    Transcription factors can serve as links between tumor microenvironment signaling and oncogenesis. Interferon regulatory factor 9 (IRF9) is recruited and expressed upon interferon stimulation and is dependent on cofactors that exert in tumor-suppressing or oncogenic functions via the JAK-STAT pathway. IRF9 is frequently overexpressed in human lung cancer and is associated with decreased patient survival; however, the underlying mechanisms remain to be elucidated. Here, we used stably transduced lung adenocarcinoma cell lines (A549 and A427) to overexpress or knockdown IRF9. Overexpression led to increased oncogenic behavior in vitro, including enhanced proliferation and migration, whereas knockdown reduced these effects. These findings were confirmed in vivo using lung tumor xenografts in nude mice, and effects on both tumor growth and tumor mass were observed. Using RNA sequencing, we identified versican (VCAN) as a novel downstream target of IRF9. Indeed, IRF9 and VCAN expression levels were found to be correlated. We showed for the first time that IRF9 binds at a newly identified response element in the promoter region of VCAN to regulate its transcription. Using an siRNA approach, VCAN was found to enable the oncogenic properties (proliferation and migration) of IRF9 transduced cells, perhaps with CDKN1A involvement. The targeted inhibition of IRF9 in lung cancer could therefore be used as a new treatment option without multimodal interference in microenvironment JAK-STAT signaling

    Expression and function of soluble guanylate cyclase in pulmonary arterial hypertension

    No full text
    Alterations of the nitric oxide receptor, soluble guanylate cyclase (sGC) may contribute to the pathophysiology of pulmonary arterial hypertension (PAH). In the present study, the expression of sGC in explanted lung tissue of PAH patients was studied and the effects of the sGC stimulator BAY 63-2521 on enzyme activity, and haemodynamics and vascular remodelling were investigated in two independent animal models of PAH. Strong upregulation of sGC in pulmonary arterial vessels in the idiopathic PAH lungs compared with healthy donor lungs was demonstrated by immunohistochemistry. Upregulation of sGC was detected, similarly to humans, in the structurally remodelled smooth muscle layer in chronic hypoxic mouse lungs and lungs from monocrotaline (MCT)-injected rats. BAY 63-2521 is a novel, orally available compound that directly stimulates sGC and sensitises it to its physiological stimulator, nitric oxide. Chronic treatment of hypoxic mice and MCT-injected rats, with fully established PAH, with BAY 63-2521 (10 mg x kg(-1) x day(-1)) partially reversed the PAH, the right heart hypertrophy and the structural remodelling of the lung vasculature. Upregulation of soluble guanylate cyclase in pulmonary arterial smooth muscle cells was noted in human idiopathic pulmonary arterial hypertension lungs and lungs from animal models of pulmonary arterial hypertension. Stimulation of soluble guanylate cyclase reversed right heart hypertrophy and structural lung vascular remodelling. Soluble guanylate cyclase may thus offer a new target for therapeutic intervention in pulmonary arterial hypertension

    Long noncoding RNA TYKRIL plays a role in pulmonary hypertension via the p53-mediated regulation of PDGFRβ

    No full text
    RATIONALE: Long noncoding RNAs (lncRNAs) are emerging as important regulators of diverse biological functions. Their role in pulmonary arterial hypertension (PAH) remains to be explored. OBJECTIVES: To elucidate the role of tyrosine kinase receptor inducing lncRNA (TYKRIL) as a regulator of p53/platelet-derived growth factor receptor β (PDGFRβ) signaling pathway and to investigate its role in PAH. MEASUREMENTS AND MAIN RESULTS: Using RNAseq data, TYKRIL was identified to be consistently upregulated in pericytes and pulmonary arterial smooth muscles cells (PASMCs) exposed to hypoxia and derived from IPAH patients. TYKRIL knockdown reversed the pro-proliferative (n=3) and anti-apoptotic (n=3) phenotype induced under hypoxic and IPAH conditions. Due to the poor species conservation of TYKRIL, ex-vivo studies were carried out in precision cut lung slices (PCLS) from PH patients. Knockdown of TYKRIL in PCLS decreased the vascular remodeling (n=5). The number of PCNA positive cells in the vessels were decreased and number of TUNEL positive cells in the vessels were increased in LNA treated group compared to control. Expression of PDGFRβ, a key player in PH, was found to strongly correlate with TYKRIL expression in the patient samples (n=12) and TYKRIL knockdown decreased PDGFRβ expression (n=3). Importantly, TYKRIL knockdown increased the p53 activity, a known repressor of PDGFRβ by binding to the N-terminal of p53 and interfering with p53-p300 interaction that subsequently regulates p53 nuclear translocation. CONCLUSION: TYKRIL plays an important role in PAH by regulating the p53/PDGFRβ axis

    The endothelial-enriched lncRNA LINC00607 mediates angiogenic function

    No full text
    Long non-coding RNAs (lncRNAs) can act as regulatory RNAs which, by altering the expression of target genes, impact on the cellular phenotype and cardiovascular disease development. Endothelial lncRNAs and their vascular functions are largely undefined. Deep RNA-Seq and FANTOM5 CAGE analysis revealed the lncRNA LINC00607 to be highly enriched in human endothelial cells. LINC00607 was induced in response to hypoxia, arteriosclerosis regression in non-human primates, post-atherosclerotic cultured endothelial cells from patients and also in response to propranolol used to induce regression of human arteriovenous malformations. siRNA knockdown or CRISPR/Cas9 knockout of LINC00607 attenuated VEGF-A-induced angiogenic sprouting. LINC00607 knockout in endothelial cells also integrated less into newly formed vascular networks in an in vivo assay in SCID mice. Overexpression of LINC00607 in CRISPR knockout cells restored normal endothelial function. RNA- and ATAC-Seq after LINC00607 knockout revealed changes in the transcription of endothelial gene sets linked to the endothelial phenotype and in chromatin accessibility around ERG-binding sites. Mechanistically, LINC00607 interacted with the SWI/SNF chromatin remodeling protein BRG1. CRISPR/Cas9-mediated knockout of BRG1 in HUVEC followed by CUT&RUN revealed that BRG1 is required to secure a stable chromatin state, mainly on ERG-binding sites. In conclusion, LINC00607 is an endothelial-enriched lncRNA that maintains ERG target gene transcription by interacting with the chromatin remodeler BRG1 to ultimately mediate angiogenesis
    corecore