38 research outputs found

    MicroRNAs and cancer metabolism reprogramming : the paradigm of metformin

    Get PDF
    Increasing evidence witnesses that cancer metabolism alterations represent a critical hallmark for many types of human tumors. There is a strong need to understand and dissect the molecular mechanisms underlying cancer metabolism to envisage specific biomarkers and underpin critical molecular components that might represent novel therapeutic targets. One challenge, that is the focus of this review, is the reprogramming of the altered metabolism of a cancer cell toward that of un-transformed cell. The anti-hyperglicemic agent, metformin has proven to be effective in reprogramming the metabolism of cancer cells even from those subpopulations endowed with cancer stem like features and very high chemoresistenace to conventional anticancer treatments. A functional interplay involving selective modulation of microRNAs (miRNAs) takes place along the anticancer metabolic effects exerted by metformin. The implications of this interplay will be also discussed in this review

    Targeting a phospho-STAT3-miRNAs pathway improves vesicular hepatic steatosis in an in vitro and in vivo model

    Get PDF
    Non-alcoholic fatty liver disease (NAFLD) is a leading cause of chronic liver disease. Although genetic predisposition and epigenetic factors contribute to the development of NAFLD, our understanding of the molecular mechanism involved in the pathogenesis of the disease is still emerging. Here we investigated a possible role of a microRNAs-STAT3 pathway in the induction of hepatic steatosis. Differentiated HepaRG cells treated with the fatty acid sodium oleate (fatty dHepaRG) recapitulated features of liver vesicular steatosis and activated a cell-autonomous inflammatory response, inducing STAT3-Tyrosine-phosphorylation. With a genome-wide approach (Chromatin Immunoprecipitation Sequencing), many phospho-STAT3 binding sites were identified in fatty dHepaRG cells and several STAT3 and/or NAFLD-regulated microRNAs showed increased expression levels, including miR-21. Innovative CARS (Coherent Anti-Stokes Raman Scattering) microscopy revealed that chemical inhibition of STAT3 activity decreased lipid accumulation and deregulated STAT3-responsive microRNAs, including miR-21, in lipid overloaded dHepaRG cells. We were able to show in vivo that reducing phospho-STAT3-miR-21 levels in C57/BL6 mice liver, by long-term treatment with metformin, protected mice from aging-dependent hepatic vesicular steatosis. Our results identified a microRNAs-phosphoSTAT3 pathway involved in the development of hepatic steatosis, which may represent a molecular marker for both diagnosis and therapeutic targeting

    Metformin : on ongoing journey across diabetes, cancer therapy and prevention

    Get PDF
    Cancer metabolism is the focus of intense research, which witnesses its key role in human tumors. Diabetic patients treated with metformin exhibit a reduced incidence of cancer and cancer-related mortality. This highlights the possibility that the tackling of metabolic alterations might also hold promising value for treating cancer patients. Here, we review the emerging role of metformin as a paradigmatic example of an old drug used worldwide to treat patients with type II diabetes which to date is gaining strong in vitro and in vivo anticancer activities to be included in clinical trials. Metformin is also becoming the focus of intense basic and clinical research on chemoprevention, thus suggesting that metabolic alteration is an early lesion along cancer transformation. Metabolic reprogramming might be a very efficient prevention strategy with a profound impact on public health worldwide

    MicroRNA-128-3p-mediated depletion of Drosha promotes lung cancer cell migration

    Get PDF
    Alteration in microRNAs (miRNAs) expression is a frequent finding in human cancers. In particular, widespread miRNAs down-regulation is a hallmark of malignant transformation. In the present report, we showed that the miR-128-3p, which is up-regulated in lung cancer tissues, has Drosha and Dicer, two key enzymes of miRNAs processing, as the main modulation targets leading to the widespread down-regulation of miRNA expression. We observed that the miRNAs downregulation induced by miR-128-3p contributed to the tumorigenic properties of lung cancer cells. In particular, miR- 128-3p-mediated miRNAs down-regulation contributed to aberrant SNAIL and ZEB1 expression thereby promoting the epithelial-to-mesenchymal transition (EMT) program. Drosha also resulted to be implicated in the control of migratory phenotype as its expression counteracted miR-128-3p functional effects. Our study provides mechanistic insights into the function of miR-128-3p as a key regulator of the malignant phenotype of lung cancer cells. This also enforces the remarkable impact of Drosha and Dicer alteration in cancer, and in particular it highlights a role for Drosha in non-smallcell lung cancer cells migration

    Aberrant transcriptional and post-transcriptional regulation of SPAG5, a YAP-TAZ-TEAD downstream effector, fuels breast cancer cell proliferation

    Get PDF
    Sperm-associated antigen 5 (SPAG5) is an important driver of the cell mitotic spindle required for chromosome segregation and progression into anaphase. SPAG5 has been identified as an important proliferation marker and chemotherapy-sensitivity predictor, especially in estrogen receptor-negative breast cancer subtypes. Here, we report that SPAG5 is a direct target of miR-10b-3p, and its aberrantly high expression associates with poor disease-free survival in two large cohorts of breast cancer patients. SPAG5 depletion strongly impaired cancer cell cycle progression, proliferation, and migration. Interestingly, high expression of SPAG5 pairs with a YAP/TAZ-activated signature in breast cancer patients. Reassuringly, the depletion of YAP, TAZ, and TEAD strongly reduced SPAG5 expression and diminished its oncogenic effects. YAP, TAZ coactivators, and TEAD transcription factors are key components of the Hippo signaling pathway involved in tumor initiation, progression, and metastasis. Furthermore, we report that SPAG5 is a direct transcriptional target of TEAD/YAP/TAZ, and pharmacological targeting of YAP and TAZ severely reduces SPAG5 expression. Collectively, our data uncover an oncogenic feedback loop, comprising miR-10b-3p, SPAG5, and YAP/TAZ/TEAD, which fuels the aberrant proliferation of breast cancer

    Long non-coding MIR205HG depletes Hsa-miR-590-3p leading to unrestrained proliferation in head and neck squamous cell carcinoma

    Get PDF
    Over 70% of head & neck squamous cell carcinoma (HNSCC) patients carry TP53 oncogenic mutations. Here we studied the role of specific tumor-derived mutant p53 proteins in the aberrant transcription of long non-coding (lnc) MIR205HG gene in head and neck cancer cells. Methods: To understand the role of lncMIR205HG, that we showed to be transcriptionally regulated by mutant p53 in HNSCC, we have employed siRNA and shRNA in CAL27 and FaDu HNSCC cell lines to suppress p53 gene expression in ChIP assays and RT-qPCR. We validated our findings in a cohort of 522 HNSCC patients from The Cancer Genome Atlas Data Portal (TCGA). We further evaluated our results in 63 HNSCC tumor samples collected at our institute, 32 of which were characterized by mutated TP53 (missense mutations) while 31 were characterized by wild-type TP53. Results: Maturation of pre-MIR205HG transcript produces two non-coding RNAs, lncMIR205HG and hsa-miR-205-5p. Down-regulation of lncMIR205HG expression significantly reduced cell proliferation, cell migration and clonogenic activity of head and neck cancer cells. Expression of MIR205HG was significantly increased in HNSCC with mutated TP53 when compared with matched non-tumoral tissues. Furthermore, MIR205HG expression levels were significantly higher in tumoral samples with mutant p53 than in tumoral tissues expressing wild-type p53. Mechanistically, MIR205HG depletes endogenous miR-590-3p leading to increased cyclin B, cdk1, and YAP protein expression. Conclusions: Taken together, these findings identify a transcriptional and post-transcriptional molecular network that includes mutant p53 protein, lncMIR205HG, YAP, and other proliferation-related genes, which are enriched in HNSCC patients with poor prognosis

    Interrogating colorectal cancer metastasis to liver: a search for clinically viable compounds and mechanistic insights in colorectal cancer Patient Derived Organoids

    Get PDF
    Approximately 20-50% of patients presenting with localized colorectal cancer progress to stage IV metastatic disease (mCRC) following initial treatment and this is a major prognostic determinant. Here, we have interrogated a heterogeneous set of primary colorectal cancer (CRC), liver CRC metastases and adjacent liver tissue to identify molecular determinants of the colon to liver spreading. Screening Food and Drug Administration (FDA) approved drugs for their ability to interfere with an identified colon to liver metastasis signature may help filling an unmet therapeutic need

    The EGFR family members sustain the neoplastic phenotype of ALK+ lung adenocarcinoma via EGR1.

    Get PDF
    In non-small cell lung cancer (NSCLC), receptor tyrosine kinases (RTKs) stand out among causal dominant oncogenes, and the ablation of RTK signaling has emerged as a novel tailored therapeutic strategy. Nonetheless, long-term RTK inhibition leads invariably to acquired resistance, tumor recurrence and metastatic dissemination. In ALK+ cell lines, inhibition of ALK signaling was associated with coactivation of several RTKs, whose pharmacological suppression reverted the partial resistance to ALK blockade. Remarkably, ERBB2 signaling synergized with ALK and contributed to the neoplastic phenotype. Moreover, the engagement of wild-type epidermal growth factor receptor or MET receptors could sustain cell viability through early growth response 1 (EGR1) and/or Erk1/2; Akt activation and EGR1 overexpression prevented cell death induced by combined ALK/RTK inhibition. Membrane expression of ERBB2 in a subset of primary naive ALK+ NSCLC could be relevant in the clinical arena. Our data demonstrate that the neoplastic phenotype of ALK-driven NSCLC relays ‘ab initio' on the concomitant activation of multiple RTK signals via autocrine/paracrine regulatory loops. These findings suggest that molecular and functional signatures are required in de novo lung cancer patients for the design of efficacious and multi-targeted ‘patient-specific' therapies

    Metformin-induced metabolic reprogramming of chemoresistant ALDHbright breast cancer cells

    Get PDF
    Metabolic remodeling is a hallmark of cancer progression and may affect tumor chemoresistance. Here we investigated by 1H-NMR/PCA analysis the metabolic profile of chemoresistant breast cancer cell subpopulations (ALDHbright cells) and their response to metformin, a promising anticancer metabolic modulator. The purified ALDHbright cells exhibited a different metabolic profile as compared to their chemosensitive ALDHlow counterparts. Metformin treatment strongly affected the metabolism of the ALDHbright cells thereby affecting, among the others, the glutathione metabolism, whose upregulation is a feature of progenitor-like, chemoresistant cell subpopulations. Globally, metformin treatment reduced the differences between ALDHbright and ALDHlow cells, making the former more similar to the latter. Metformin broadly modulated microRNAs in the ALDHbright cells, with a large fraction of them predicted to target the same metabolic pathways experimentally identified by1H-NMR. Additionally, metformin modulated the levels of c-MYC and IRS-2, and this correlated with changes of the microRNA-33a levels. In summary, we observed, both by 1H-NMR and microRNA expression studies, that metformin treatment reduced the differences between the chemoresistant ALDHbright cells and the chemosensitive ALDHlow cells. This works adds on the potential therapeutic relevance of metformin and shows the potential for metabolic reprogramming to modulate cancer chemoresistance
    corecore